Quantification of vortex flow in pulmonary arteries of patients with chronic thromboembolic pulmonary hypertension

Hiroki Kamada, Hideki Ota, Masanori Nakamura, Wenyu Sun, Tatsuo Aoki, Haruka Sato, Koichiro Sugimura, Kei Takase

PII: S0720-048X(21)00623-9
DOI: https://doi.org/10.1016/j.ejrad.2021.110142
Reference: EURR 110142

To appear in: European Journal of Radiology

Received Date: 14 October 2021
Revised Date: 13 December 2021
Accepted Date: 29 December 2021

Please cite this article as: H. Kamada, H. Ota, M. Nakamura, W. Sun, T. Aoki, H. Sato, K. Sugimura, K. Takase, Quantification of vortex flow in pulmonary arteries of patients with chronic thromboembolic pulmonary hypertension, European Journal of Radiology (2021), doi: https://doi.org/10.1016/j.ejrad.2021.110142

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.
Title
Quantification of vortex flow in pulmonary arteries of patients with chronic thromboembolic pulmonary hypertension

Authors (name, institution, and address)
Hiroki Kamada, MD, PhD, Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan (hkamada@rad.med.tohoku.ac.jp)

Hideki Ota, MD, PhD, Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan (h-ota@rad.med.tohoku.ac.jp)

Masanori Nakamura, PhD, Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan (nakamura.masanori@nitech.ac.jp)

Wenyu Sun, MD, Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan (sunwenyu910920@gmail.com)

Tatsuo Aoki, MD, PhD, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (aokitatsuo@gmail.com)

Haruka Sato, MD, PhD, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (haruka.s@cardio.med.tohoku.ac.jp)

Koichiro Sugimura, MD, PhD, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (ksugimura@cardio.med.tohoku.ac.jp)

Kei Takase, MD, PhD, Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan (ktakase@rad.med.tohoku.ac.jp)

Conflict of interest
The authors declare that they have no conflict of interest.

Corresponding author
Hiroki Kamada, MD, PhD; hkamada@rad.med.tohoku.ac.jp
Present address
Department of Diagnostic Radiology, Tohoku University Hospital
1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan

Ethical approval/ Informed consent
The present study was approved by the ethics committee of Tohoku University (2014-1-875).

Acknowledgement
The authors are grateful to Tatsuo Nagasaka and Tomoyoshi Kimura for support with 4D-flow MRI scan, Shin Chibana for his support with post processing of image data, Aurelien F. Stalder (Siemens Healthineer GmbH) for providing 4D-Flow Demonstrator, and Yoshiaki Komori and Yuta Urushibata (Siemens Healthcare K.K.) for support with acquisition of 4D-flow MRI.

Grant support
This research was supported by JSPS KAKENHI Grant Numbers JP17K16414, JP16K10265.

Running title
Vortex flow in PA of patients with CTEPH

Abstract

Purpose: This study proposes an objective method of quantifying the vortex flow in pulmonary arteries to compare the duration of its presence before and after balloon pulmonary angioplasty (BPA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH).
Methods: Thoracic 4D-flow magnetic resonance imaging was performed in 28 CTEPH patients before and after BPA. Planes were set in pulmonary arteries to evaluate volume flow rate (VFR), the duration, and area of backward flow in the pulmonary trunk, which is a component of the vortex flow. The full width at half maximum (FWHM) of the peak of the time course of VFR of backward flow was assessed to quantify the duration of the vortical flow.

Results: Although overall flow patterns after BPA appeared to be the same as the one before BPA, significant decreases in the FWHM, area, and VFR of the backward flow after BPA were found (FWHM: before, $1.88 \times 10^{-1} \pm 1.51 \times 10^{-2}$ [cardiac cycle] vs. after, $1.65 \times 10^{-1} \pm 1.86 \times 10^{-2}$ [cardiac cycle]; area ratio: before, $2.67 \times 10^{-1} \pm 1.30 \times 10^{-2}$ vs. after, $2.38 \times 10^{-1} \pm 1.31 \times 10^{-2}$; VFR: before, 13.6±2.21 [mL/s] vs. after, 11.3±2.36 [mL/s]).

Conclusion: BPA promoted significant decreases in the FWHM, area, and VFR of backward flow in the pulmonary trunk, thereby facilitating efficient blood transport. The tendencies for these changes were to be larger for cases where BPA more greatly decreased the pressure. The results suggest that the FWHM, area, and VFR are useful indicators for the noninvasive evaluation of the therapeutic effects of BPA.

Key words
4D-flow MRI; CTEPH; BPA; blood flow
Abbreviations

Chronic thromboembolic pulmonary hypertension (CTEPH)

Pulmonary artery pressure (PAP)

Right heart catheterization (RHC)

Balloon pulmonary angioplasty (BPA)

Magnetic resonance (MR) imaging

Three-dimensional phase-contrast magnetic resonance imaging (4D-flow MRI)

Volume flow rate (VFR)

Electrocardiogram (ECG)

Pulmonary vascular resistance (PVR)

Right ventricular ejection fraction (RVEF)

Right ventricular cardiac index (RVCI)

Velocity encoding (VENC)

Full width at half maximum (FWHM)

Flow momentum index (FMI)

Reynolds number (Re)

Transthoracic pressure gradient (TRPG)
Introduction

Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by the presence of organized thrombi in the pulmonary arteries (PAs) [1]. Without appropriate treatment, CTEPH has poor prognosis due to progressive right ventricular heart failure [2]. Mean PA pressure (PAP) measured via right heart catheterization (RHC) is an important metric in the diagnosis, prognosis, and response to therapy of this condition. Pulmonary endarterectomy has been the standard treatment for CTEPH. However, it is not suitable for patients whose arteriopathy is located in the distal vessels [3]. In this regard, balloon pulmonary angioplasty (BPA) may be an alternative treatment for patients with distal-type CTEPH or those not suited to surgery [4,5].

Time-resolved, three-dimensional (3D), phase-contrast, magnetic resonance imaging (4D-flow MRI) has been applied to analyze blood flow in the heart and large vessels [6]. Its use allows not only the visualization of flow patterns but also analyses of various fluid mechanical quantities, such as vorticity, helicity, and wall shear stress [7,8,9].

Previous studies have implicated vortex flow in the PA as an abnormal blood flow for patients with pulmonary hypertension [7,10,11]. Reiter et al. evaluated the relative duration of the vortical flow in a cardiac cycle by viewing velocity fields and
reported a strong correlation between the duration of vortical blood flow in the main PA and mean PAP in patients with pulmonary hypertension [10]. This result strongly suggests that vortical flow can be used as a marker of pulmonary hypertension. However, visual assessment of blood flow is difficult, particularly when it has a complex structure and variable momentum, and thus such assessment is prone to be subjectivity and being dependent on the observer. In Reiter et al. (2014)[10], the assessment was done by two readers with 12 years of experience in cardiac MRI. In addition, visual assessment of blood flow with a complex 3D structure is time-consuming because such a structure appears different depending on the viewing angle; reportedly, the visual assessment of the vortical flow took between 15 and 25 min per patient [10]. Therefore, a quantitative, objective evaluation of the vortex flow in the PA that requires less effort is necessary for clinical application, such as evaluation of the therapeutic effects and long-term monitoring of pulmonary hypertension.

In this study, we propose a more objective way of quantifying the vortical flow in the PA with a focus on the backward flow component, a part of the vortex flow. The duration, volume flow rate (VFR), and cross-sectional area of the backward flow was evaluated from time-resolved, 3D velocity fields obtained by 4D-flow MRI. We also assessed the structure of blood flow using various fluid mechanical indices that represent
the flow complexity. The hemodynamics in the PA before and after BPA in patients with CTEPH were compared to assess the efficacy of the proposed method.
Methods

Study population

This study was approved by the local institutional review board and written informed consent was obtained for each patient. In all, 28 CTEPH patients (7 men and 21 women; mean age, 68 years; range, 50–83 years) were prospectively enrolled. Based on the National Institute for Health and Care Excellence criteria [12], all patients were diagnosed with CTEPH by medical history, physical examination, electrocardiogram (ECG), chest X-ray, echocardiography, lung ventilation/perfusion scintigraphy, RHC, and computed tomography angiography or PA angiography. The patients were treated with the optimal medical therapy and several sessions of BPA (mean, 3.7 ± 0.29). In one procedure, the target lesion was limited to 1 or 2 segments in one lobe to minimize the complications from BPA. The sessions of BPA were repeated until the mean PAP became less than 30 [mmHg] at a 4–8 week interval [13]. RHC after interventions showed decreases in mean PAP (before, 40 ± 1.6 [mmHg] vs. after, 25 ± 1.3 [mmHg]). The postoperative pressure decrease in mean PAP (ΔP) was 15 ± 1.6 [mmHg] (range, 3-28 [mmHg]; median, 14 [mmHg]). RHC data before and after BPA is summarized in Table 1. No patients manifested a severe complication, however, some patients had blood sputum and mild or moderate hemoptysis; they were treated noninvasively.
Thoracic 4D-flow MRI

Thoracic 4D-flow MRI examinations were performed in patients before and after sessions of BPA (mean interval, 363 ± 29.6 [days]) using a 3.0 T scanner (MAGNETOM Trio, A Tim System; Siemens Healthineers, Enlargen, Germany). Mean intervals between RHC and 4D-flow MRI examination before and after BPA were 31.4 ± 9.9 [days] and 27.5 ± 13.9 [days], respectively. The MRI was performed with the following parameters: 3D phase-contrast MRI with three-directional velocity encoding transverse acquisition; ECG gating (prospective); respiratory gating (prospective); TR/TE, 42.6/2.54 [ms]; flip angle, 15 [°]; velocity encoding (VENC), 70 [cm/s], spatial resolution, 2.4 × 1.8 × 3.5 [mm³]; time resolution, 14–24 [phases/cardiac cycle]. 2D phase contrast imaging at the cross-section of the pulmonary trunk was performed prior to 4D-flow MRI. The value of VENC was chosen according to the 2D phase contrast data. The acquisition time of 4D-flow MRI and mean heart rate during acquisition were 20 ± 1 [min] and 73.5 ± 2.1 [bpm] before BPA, and 19 ± 1 [min] and 71.9 ± 2.0 [bpm] after BPA. Parameters of 4D-flow MRI is summarized in Table. 2.

Quantification of blood flow and vessel geometry
Prototype post-processing software (4D-flow Demonstrator version 2.3; Siemens Healthineers, Enlargen, Germany) was used to visualize the cardiovascular geometry and blood flow patterns. Cross-sectional planes were set at the inlets of the pulmonary trunk, right, and left main PAs to evaluate VFR, as shown in Fig. 1. In addition, 30 planes were set in the pulmonary trunk along the centerline to evaluate net VFR and secondary flow in each plane.

The duration of the vortical flow (the length of cardiac phases with vortex present) was quantified as the full width at half maximum (FWHM) of the peak of the time course of VFR of backward flow (VFR), as depicted in Fig. 1. The FWHM does not exactly represent the duration of vortex flow but dose quantify the length of time that vortex flow exists with a high momentum, which is considered to have a relatively large impact on pulmonary blood flow during a cardiac cycle.

The size of vortical flow was evaluated as the proportion of the area of the backward flow present in each cross-section, and the time-averaged area ratio was defined by

\[
\text{area ratio} = \frac{\sum_{p} N_p A_b / A}{N_p}
\]

where \(A_b \) is the cross-sectional area occupied by the backward flow, \(A \) is the entire cross-sectional area, and \(N_p \) is the number of data acquisition phases of 4D-MRI (i.e., time
The velocity, v, in a cross-sectional plane may be either forward or backward ($v_{n,f}$ and $v_{n,b}$), as shown in Fig. 1. The mean backward flow rate during a cardiac cycle is

$$VFR_b = \frac{\sum_{p}^{N_p} VFR_{b}}{N_p} = \frac{\sum_{p}^{N_p} \int |v_{n,b}| A_b}{N_p}$$

where $v_{n,b}$ is the normal component of the spatially averaged backward flow velocity.

The laminar-to-turbulent nature of the blood flow was assessed with the Reynolds number (Re) defined as

$$Re = \frac{uD}{\nu}$$

where u is a representative velocity, D is the diameter of the blood vessel, and ν is the kinematic viscosity. The normal component of the spatially averaged velocity in a cross-sectional plane was used as the representative velocity. The kinetic viscosity of blood was approximated by $\nu = 3.3 \times 10^{-6}$ [m2/s].

Flow complexity was assessed with various fluid mechanical indices, namely, the flow momentum index (FMI), enstrophy density, and helicity density (H_d). The FMI represents the relative strength of secondary flow [14] and is defined as the ratio between the norms of the in-plane and a cross-sectional plane components of velocity ($|v_s|$ and $|v|$, respectively). Enstrophy density describes the strength of vorticity and is defined as one half of the square of the vorticity [15]. H_d indicates the strength and direction of rotation.
of the vorticity at a position and is defined as the inner product of the velocity and vorticity [9].

The vortex structure of blood flow was characterized with the second invariant of the velocity gradient tensor (Q) [16]. A region with positive Q-value represents the existence of a vortex core, and thus Q value was evaluated to visualize the vortex structure.

The geometric features of the PA, such as diameter, curvature, and bifurcation angle, were assessed. The mean diameter of the pulmonary trunk was calculated as time-averaged mean diameter in the 30 planes. The vessel curvature is the reciprocal of the radius of curvature that is equal to a circumradius of the triangle formed by a point on the centerline and two neighboring points. 30 points were set in the centerline of the pulmonary trunk, and the mean curvature was defined as the average of curvatures at each point. The bifurcation angle was defined as the angle between the center of the outlet of the pulmonary trunk and those of inlets of the right and left main PAs.

We assessed the parameters before and after BPA and explored the relationship between the parameters and mean PAP obtained by RHC. The parameters were calculated using in-house codes implemented with MATLAB 2018b software (MathWorks, Natick, Massachusetts, USA). Data smoothing for velocity fields was done with a $3 \times 3 \times 3$ median filter and 3D Gaussian filter ($\sigma = 0.5$).
Statistical analyses

Statistical parameters, such as the mean value, range, standard deviation, standard error, and paired t-test results, were calculated using JMP pro version 14 software (SAS Institute, Cary, North Carolina, USA). A p-value of less than 0.05 was considered to be statistically significant.
Results

Volume flow rate and duration of backward flow in the main pulmonary artery

Figure 2 shows the FWHM, the area ratio, and $\overline{VFR_b}$ in the pulmonary trunk. The values are the means obtained for the 30 cross-sectional planes in the pulmonary trunk. Compared to their values before BPA, the FWHM, the area ratio, and $\overline{VFR_b}$ after BPA all significantly changed: the FWHM shortened (before, $1.88 \times 10^{-1} \pm 1.51 \times 10^{-2}$ [cardiac cycle] vs. after, $1.65 \times 10^{-1} \pm 1.86 \times 10^{-2}$ [cardiac cycle], $p = 0.0429$), the area ratio decreased (before, $2.67 \times 10^{-1} \pm 1.30 \times 10^{-2}$ vs. after, $2.38 \times 10^{-1} \pm 1.31 \times 10^{-2}$, $p = 0.0034$), and the $\overline{VFR_b}$ decreased (before, 13.6 ± 2.21 [mL/s] vs. after, 11.3 ± 2.36 [mL/s], $p = 0.009$). The values of the perioperative ratios of FWHM ($=\overline{\text{FWHM}}_{\text{after}}/\overline{\text{FWHM}}_{\text{before}}$), area ratio ($=(A_{b}/A)_{\text{after}}/(A_{b}/A)_{\text{before}}$), and $\overline{VFR_b}$ ($=\overline{VFR_{b,\text{after}}}/\overline{VFR_{b,\text{before}}}$) were 0.88 ± 0.053, 0.91 ± 0.039 and 0.91 ± 0.099, respectively. There were no statistical correlations between ΔP and FWHM, area ratio, or $\overline{VFR_b}$.

We classified the cases into two groups with reference to the median ΔP of 14 [mmHg]: the large ($\Delta P \geq 14$ [mmHg], 15 cases) and small ($\Delta P < 14$ [mmHg], 13 cases) decrease groups. The mean PAPs before BPA were 45 ± 1.6 [mmHg] and 35 ± 2.3 [mmHg] for the large and small decrease groups, respectively. The values after BPA were 23 ± 1.6 [mmHg] and 28 ± 2.0 [mmHg]. Figure 3 shows the FWHW, area ratio, and
for the two groups. All of the parameters significantly decreased in the large decrease group (FWHM: before, $1.79 \times 10^{-1} \pm 1.61 \times 10^{-2}$ [cardiac cycle] vs. after, $1.44 \times 10^{-1} \pm 1.54 \times 10^{-2}$ [cardiac cycle], $p = 0.0064$; area ratio: before, $2.63 \times 10^{-1} \pm 1.27 \times 10^{-2}$ vs. after, $2.25 \times 10^{-1} \pm 1.08 \times 10^{-2}$, $p = 0.0058$; $\overline{VFR_b}$: before, 11.7 ± 1.56 [mL/s] vs. after, 7.9 ± 9.99 [mL/s], $p = 0.0097$). On the other hand, no statistically significant postoperative differences were noted in the small decrease group (FWHM: before, $1.98 \times 10^{-1} \pm 2.72 \times 10^{-2}$ [cardiac cycle] vs. after, $1.90 \times 10^{-1} \pm 3.56 \times 10^{-2}$ [cardiac cycle], $p = 0.328$; area ratio: before, $2.72 \times 10^{-1} \pm 2.46 \times 10^{-2}$ vs. after, $2.52 \times 10^{-1} \pm 2.53 \times 10^{-2}$, $p = 0.114$; $\overline{VFR_b}$: before, 15.7 ± 4.43 [mL/s] vs. after, 15.1 ± 4.64 [mL/s], $p = 0.373$).

Volume flow rate at the inlets of the pulmonary trunk and bilateral main pulmonary artery

Figure 4 shows the time-averaged VFR (\overline{VFR}) at the inlet of the pulmonary trunk. As the perioperative ratio was 1.34 ± 0.186, a statistically significant increase in the \overline{VFR} after BPA was discovered (before, 72.5 ± 4.15 [mL/s] vs. after, 84.5 ± 4.33 [mL/s], $p = 0.0148$). \overline{VFR}s increased at the inlets of the bilateral main PAs (right: before, 10.6 ± 1.56 [mL/s] vs. after, 14.4 ± 2.07 [mL/s], $p = 0.0428$; left: before, 13.2 ± 1.79 [mL/s] vs. after, 13.9 ± 1.91 [mL/s], $p = 0.341$). The split ratio of the flow between the right and left main PAs
\[(\frac{VFR_{right}}{VFR_{right} + VFR_{left}})\] did not significantly change (before, 43 ± 5.75% vs. after, 49 ± 5.29%, \(p = 0.262\)).

The \(VFR\) at the inlet of the pulmonary trunk significantly increased in the large decrease group (before, 67.6 ± 5.57 [mL/s] vs. after, 85.4 ± 6.55 [mL/s], \(p = 0.0173\)), whereas no significant change was observed in the small decrease group (before, 78.2 ± 6.08 [mL/s] vs. after, 83.4 ± 5.73 [mL/s], \(p = 0.118\)). The perioperative ratios were 1.54 ± 0.34 and 1.13 ± 0.086 in the large and small decrease groups, respectively.

Blood flow structure and flow complexity

Figure 5 shows representative streamlines in late systole of two patients; one is in the large decrease group whose mean PAP decreased from 48 to 20 [mmHg], and the other is in the small decrease group whose mean PAP decreased from 47 to 40 [mmHg]. The streamlines are colored according to the value of the streamwise velocity. The perioperative changes in the streamlines did not show any notable difference between the two cases. Before BPA, the flow was disturbed with vortices in the PAs (Fig. 5A and C). Afterward, the flow disturbance in late systole was attenuated and streamwise velocity increased, although a vortical flow was still present in the pulmonary trunk (Fig. 5B and D).
Figure 6 shows isosurface plots of H_d and Q-value during late systole in those same two patients as displayed in Fig. 5. The sign of H_d changes according to the directions of the velocity and vorticity, with red (blue) indicating positive (negative) values of H_d. Regions of positive and negative H_d can be seen in the pulmonary trunk, indicating that local blood flow was spinning in different directions. Considering the perioperative change in distribution of positive and negative H_d regions, no notable differences between the two cases were noted. Before BPA, positive and negative H_d regions were observed in the pulmonary trunk (Fig. 6A and C, left). Even after BPA, positive and negative H_d regions were still observed, suggesting the existence of helical flow (Fig. 6B and D, left).

The region of positive Q-value indicates the existence of a vortex core. Likewise, there was no notable difference between the two cases, in terms of the perioperative change in the distribution of the positive Q-value region (the large decrease group, Fig. 6A and B, right; the small decrease group, Fig. 6C and D, right).

Neither FMI nor enstrophy density for all patients showed significant changes with BPA (FMI: before, 0.609 ± 0.0128 vs. after, 0.594 ± 0.0122, $p = 0.917$; enstrophy density: before, $2.71 \times 10^4 \pm 1.90 \times 10^3 \, [1/s^2]$ vs. after, $2.95 \times 10^4 \pm 3.94 \times 10^3 \, [1/s^2]$, $p = 0.196$).
Reynolds number (Re) and vessel geometry

After BPA, peak and mean Re significantly increased (peak: before, 3580 ± 158 vs. after, 4120 ± 214, \(p = 0.0098 \); mean: before, 888 ± 49.5 vs. after, 1110 ± 60.8, \(p = 0.0007 \)).

The diameter of the pulmonary trunk significantly decreased (before, 34.8 ± 0.879 [mm] vs. after, 33.4 ± 0.828 [mm], \(p = 0.0009 \)). The mean curvature of the pulmonary trunk and bifurcation angle did not show any significant change (mean curvature: before, 35.5 ± 2.8 [m\(^{-1}\)], vs after, 33.3 ± 2.1 [m\(^{-1}\)], \(p = 0.47 \); bifurcation angle: before, 83 ± 2.3 [°] vs after, 84 ± 2.2 [°], \(p = 0.59 \)).
Discussion

The major findings of the present study are two-folds. First, for the backward flow in the pulmonary trunk, its duration, extent of its region, and its VFR all significantly decreased after BPA. Second, the fluid mechanical indices representing the complexity of blood flow did not show a significant change after BPA, despite an increase in Re (i.e., the blood flow may now be disturbed more easily).

Perioperative changes in backward flow and whole pulmonary blood flow

A postoperative decrease in mean PAP by RHC is a major therapeutic effect [5,17,18]. Pressure and velocity are closely associated in blood flow, and the pressure gradient can be calculated from the velocity field using fluid mechanics. However, it is not possible to calculate the absolute blood pressure solely from a velocity field. Previous studies have investigated the relationship between mean PAP and velocity field [7,19,20,21]. Reiter et al. (2015)[10] observed vortices in the pulmonary trunk for patients with pulmonary hypertension, and successfully demonstrated a strong correlation between appearance time of vortices and mean PAP. Using the same technique, Ramos et al. (2020)[21] demonstrated a correlation between mean PAP, estimated by the duration, and the transtricuspid pressure gradient (TRPG). Because vortical flow in the PA has a 3D
structure and coexists with helical flow, it is difficult to accurately make a visual assessment of changes in its size and duration. Therefore, a quantitative and objective way to assess it is desired. For backward flow, the present results show decreases in FWHM, extent of the region, and VFR after BPA. These changes were larger in cases with larger pressure decreases. Therefore, these factors are useful indicators for noninvasive evaluation of the therapeutic effects of BPA.

Perioperative changes in the complexity of blood flow

A flow pattern and its complexity are determined by vessel geometry and flow rate. In terms of vessel geometry, the curvature from the pulmonary trunk and the bifurcation angle did not show any significant change from BPA, while the vessel diameter decreased. In fluid mechanics, Re is a key index to represent the nature of a flow, i.e., laminar or turbulent. In the present study, the mean Re increased, up to ~1100, after BPA. This implies that the blood flow is still laminar, but a flow with a larger Re can be disturbed more easily than the one with a smaller value [22]. Notwithstanding an increase in Re, the streamlines after BPA demonstrate regression of the flow disturbance. Moreover, the fluid mechanical indices that describe flow complexity, such as FMI and enstrophy
density, did not show any significant changes after BPA. These perioperative changes indicate that blood transport in the pulmonary trunk is facilitated by BPA.

Limitations

There were some limitations to this study. First, the number of patients was relatively small. Second, the follow-up 4D-flow MRI was performed only once after BPA. After BPA, right ventricular reverse remodeling has been reported [17]; this would be associated with a change in the cardiovascular outcome in patients with CTEPH. A long-term follow-up study could detect any additional changes in the PA blood flow.

Conclusions

BPA promoted significant decreases in the FWHM, area, and VFR of backward flow in the pulmonary trunk, thereby facilitating efficient blood transport. These changes tended to be larger in cases where ΔP was larger. The results suggest that the FWHM, area, and VFR are useful indicators for the noninvasive evaluation of the therapeutic effects of BPA.
References

3. N. Yamada, Beneficial Therapeutic Effects of Balloon Pulmonary Angioplasty on Biventricular Function in Patients With Chronic Thromboembolic Pulmonary Hypertension, Circ J. 80 (6) (2016) 1326-1327.

19. Q.J. Han, W.R. Witschey, C.M. Fang-Yen, J.S. Arkles, A.J. Barker, P.R. Forfia, Y. Han, Altered Right Ventricular Kinetic Energy Work Density and Viscous

Figure titles and legends

Figure 1. Assessment of blood flow in the pulmonary artery (PA).

Figure 2. Perioperative changes in the full width at half maximum (FWHM) of the peak of the time course of volume flow rate of backward flow ($\bar{VFR_b}$), area ratio between the cross-sectional area occupied by the backward flow (A_b) and the entire cross-sectional area (A), and the time-averaged $\bar{VFR_b}$ during a cardiac cycle.

Figure 3. Perioperative changes in the full width at half maximum (FWHM) of the peak of the time course of the volume flow rate of backward flow ($\bar{VFR_b}$), area ratio between the cross-sectional area occupied by the backward flow (A_b) and the entire cross-sectional area (A), and time-averaged $\bar{VFR_b}$ for two groups in reference to the median decrease in mean pulmonary artery pressure, $\Delta P = 14$ [mmHg]: the large ($\Delta P \geq 14$ [mmHg], 15 cases) and small ($\Delta P < 14$ [mmHg], 13 cases) decrease groups.

Figure 4. Perioperative changes in the volume flow rate (VFR) at the inlets of the (A) pulmonary trunk, and (B) right, and (C) left main pulmonary arteries (PAs).
Figure 5. Flow streamlines in late systole of two patients; one each from the large ($\Delta P \geq 14$ [mmHg]) ((A) before and (B) after BPA) and small ($\Delta P < 14$ [mmHg]) decrease groups ((C) before and (D) after BPA).

Figure 6. Isosurface plots of the helicity density (H_d) and second invariant of the velocity gradient tensor (Q) during late systole in the same patients as those displayed in Fig. 5. The plots of H_d and Q are shown in (A) before and (B) after BPA for the patient in the large decrease group, and (C) before and (D) after BPA for the one in the small decrease group, respectively. ΔP: decrease in mean pulmonary artery pressure.
Tables

Table 1: Right heart catheterization data before and after balloon pulmonary angioplasty (BPA). Patients were classified into two groups with reference to the median ΔP of 14 [mmHg]: the large (ΔP ≥ 14 [mmHg], 15 cases) and small (ΔP < 14 [mmHg], 13 cases) decrease groups. PAP: pulmonary artery pressure, PVR: pulmonary vascular resistance, RVEF: right ventricular ejection fraction, RVCI: right ventricular cardiac index, ΔP: decrease in mean pulmonary artery pressure.

Table 2: Parameters of thoracic 4D-flow MRI examinations. VENC: velocity encoding.

Conflict of interest
The authors declare that they have no conflict of interest.

Dear. Editor,

We are most grateful to you and reviewers for the helpful comments on the previous version of our manuscript. We have taken all comments into account and submit, herewith, a revised manuscript and figures.
We have addressed all the comments. In this revision, we added some description based on reviewer’s comments, and shortened some description to meet word count. Please take a look at the attached files.

We believe that the findings described in this study will be of special interest to the readers of *EJR*.

Ethical approval:
The present study was approved by the ethics committee of Tohoku University (2014-1-875).

Authors contribution:
All the authors contributed to described manuscript and take responsibility for it. **Hiroki Kamada**: Conception and design, Analysis and interpretation, Writing the article, Critical revision of the article, Literature search. **Hideki Ota**: Conception and design, Critical revision of the article, Data collection, Literature search. **Masanori Nakamura**: Analysis and interpretation, Critical revision of the article, Literature search. **Wenyu Sun**: Analysis and interpretation. **Haruka Sato**: Data Collection, Provision of materials, patients, or resources. **Tatsuo Aoki**: Data Collection, Provision of materials, patients, or resources. **Koichiro Sugimura**: Data Collection, Provision of materials, patients, or resources. **Kei Takase**: Administrative, technical, or logistic support.

Corresponding author and co-corresponding author:
Hiroki Kamada, MD, PhD; hkamada@rad.med.tohoku.ac.jp
Hideki Ota, MD, PhD; h-ota@rad.med.tohoku.ac.jp

All the authors contributed to described manuscript and take responsibility for it. Thank you for your consideration. I look forward to hearing from you.

Sincerely,

Hiroki Kamada
Email: hkamada@rad.med.tohoku.ac.jp

Authors contribution:
All the authors contributed to described manuscript and take responsibility for it.

Hiroki Kamada: Conception and design, Analysis and interpretation, Writing the article, Critical revision of the article, Literature search.

Hideki Ota: Conception and design, Critical revision of the article, Data collection, Literature search.

Masanori Nakamura: Analysis and interpretation, Critical revision of the article, Literature search.

Wenyu Sun: Analysis and interpretation.

Haruka Sato: Data Collection, Provision of materials, patients, or resources.

Tatsuo Aoki: Data Collection, Provision of materials, patients, or resources.

Koichiro Sugimura: Data Collection, Provision of materials, patients, or resources.

Kei Takase: Administrative, technical, or logistic support.

Corresponding author
Hiroki Kamada, MD, PhD; hkmamada@rad.med.tohoku.ac.jp

<table>
<thead>
<tr>
<th></th>
<th>Before BPA</th>
<th>After BPA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients (n = 28)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic PAP [mmHg]</td>
<td>74.1 ± 2.7</td>
<td>44.9 ± 2.5</td>
<td><.0001*</td>
</tr>
<tr>
<td>Diastolic PAP [mmHg]</td>
<td>22.6 ± 1.2</td>
<td>15.2 ± 1.1</td>
<td><.0001*</td>
</tr>
<tr>
<td>Mean PAP [mmHg]</td>
<td>40.1 ± 1.6</td>
<td>25.1 ± 1.3</td>
<td><.0001*</td>
</tr>
<tr>
<td>PVR [WU]</td>
<td>697.7 ± 56.3</td>
<td>322.5 ± 28.7</td>
<td><.0001*</td>
</tr>
<tr>
<td>RVEF [%]</td>
<td>40.2 ± 2.3</td>
<td>52.2 ± 1.8</td>
<td><.0001*</td>
</tr>
<tr>
<td>RVCI [L/min/m²]</td>
<td>2.47 ± 0.14</td>
<td>2.87 ± 0.11</td>
<td>0.0005*</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
</tbody>
</table>

Large decrease group (ΔP ≥ 14 [mmHg], n = 15)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic PAP [mmHg]</td>
<td>79.4 ± 3.2</td>
<td>40.9 ± 2.9</td>
<td><.0001*</td>
</tr>
<tr>
<td>Diastolic PAP [mmHg]</td>
<td>25.7 ± 1.2</td>
<td>15.1 ± 1.4</td>
<td><.0001*</td>
</tr>
<tr>
<td>Mean PAP [mmHg]</td>
<td>44.6 ± 1.6</td>
<td>23.0 ± 1.6</td>
<td><.0001*</td>
</tr>
<tr>
<td>PVR [WU]</td>
<td>791.7 ± 80.3</td>
<td>317.5 ± 35.7</td>
<td><.0001*</td>
</tr>
<tr>
<td>RVEF [%]</td>
<td>36.6 ± 3.2</td>
<td>49.3 ± 1.9</td>
<td><.0001*</td>
</tr>
<tr>
<td>RVCI [L/min/m²]</td>
<td>2.41 ± 0.15</td>
<td>2.80 ± 0.10</td>
<td>0.0076*</td>
</tr>
</tbody>
</table>

Small decrease group (ΔP < 14 [mmHg], n = 13)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic PAP [mmHg]</td>
<td>68.0 ± 4.0</td>
<td>49.4 ± 3.9</td>
<td><.0001*</td>
</tr>
<tr>
<td>Diastolic PAP [mmHg]</td>
<td>19.0 ± 1.8</td>
<td>15.2 ± 1.7</td>
<td>0.0033*</td>
</tr>
<tr>
<td>Mean PAP [mmHg]</td>
<td>35.0 ± 2.3</td>
<td>27.5 ± 2.0</td>
<td><.0001*</td>
</tr>
<tr>
<td>PVR [WU]</td>
<td>589.2 ± 69.5</td>
<td>328.2 ± 47.7</td>
<td>0.0002*</td>
</tr>
<tr>
<td>RVEF [%]</td>
<td>44.3 ± 3.2</td>
<td>55.6 ± 3.0</td>
<td>0.0006*</td>
</tr>
<tr>
<td>RVCI [L/min/m²]</td>
<td>2.54 ± 0.24</td>
<td>2.96 ± 0.21</td>
<td>0.0320*</td>
</tr>
</tbody>
</table>

ECG gating
- prospective

Respiratory gating
- prospective

TR [ms]	42.6
TE [ms]	2.54
Flip angle [°]	15
VENC [cm/s]	70
Spatial resolution [mm³]	2.4 × 1.8 × 3.5
Time resolution [phase/cardiac cycle]	14-24
Acquisition time [min]	20 (before BPA), 19 (after BPA)
Heart beat during acquisition [bpm]	73.5 ± 2.1 (before BPA), 71.9 ± 2.0 (after BPA)
Figure 6

The small decrease group (ΔP<14)

The large decrease group (ΔP≥14)

Pre

Post

$Q = 0$

$Q = 200$

$H_x [m/s^2]$