Advertisement

Assessment of gastric wall structure using ultra-high-resolution computed tomography

Published:November 23, 2021DOI:https://doi.org/10.1016/j.ejrad.2021.110067

      Abstract

      Purpose

      To evaluate the image quality of ultra-high-resolution CT (U-HRCT) in the comparison among four different reconstruction methods, focusing on the gastric wall structure, and to compare the conspicuity of a three-layered structure of the gastric wall between conventional HRCT (C-HRCT) and U-HRCT.

      Method

      Our retrospective study included 48 patients who underwent contrast-enhanced U-HRCT. Quantitative analyses were performed to compare image noise of U-HRCT between deep-learning reconstruction (DLR) and other three methods (filtered back projection: FBP, hybrid iterative reconstruction: Hybrid-IR, and Model-based iterative reconstruction: MBIR). The mean overall image quality scores were also compared between the DLR and other three methods. In addition, the mean conspicuity scores for the three-layered structure of the gastric wall at five regions were compared between C-HRCT and U-HRCT.

      Results

      The mean noise of U-HRCT with DLR was significantly lower than that with the other three methods (P < 0.001). The mean overall image quality scores with DLR images were significantly higher than those with the other three methods (P < 0.001). Regarding the comparison between C-HRCT and U-HRCT, the mean conspicuity scores for the three-layered structure of the gastric wall on U-HRCT were significantly better than those on C-HRCT in the fornix (5 [5–5] vs. 3.5 [3–4], P < 0.001), body (4 [3.25–5] vs. 4 [3–4], P = 0.039), angle (5 [4–5] vs. 3 [2–4], P < 0.001), and antral posterior (4 [3.25–5] vs. 2 [2–4], P < 0.001), except for antral anterior (4 [3–5] vs. 3 [3–4], P = 0.230)

      Conclusion

      U-HRCT using DLR improved the image noise and overall image quality of the gastric wall as well as the conspicuity of the three-layered structure, suggesting its utility for the evaluation of the anatomical details of the gastric wall structure.

      Keywords

      Abbreviations:

      CNR (contrast-to-noise ratio), CT (computed tomography), C-HRCT (conventional high-resolution CT), DLR (deep learning reconstruction), FBP (filtered back projection), Hybrid-IR (hybrid iterative reconstruction), MBIR (Model-based iterative reconstruction), U-HRCT (ultra-high-resolution computed tomography)
      To read this article in full you will need to make a payment

      References

        • Shimizu K.
        • Ito K.
        • Matsunaga N.
        • Shimizu A.
        • Kawakami Y.
        Diagnosis of gastric cancer with MDCT using the water-filling method and multiplanar reconstruction: CT-histologic correlation.
        AJR Am. J. Roentgenol. 2005; 185: 1152-1158https://doi.org/10.2214/AJR.04.0651
        • Bray F.
        • Ferlay J.
        • Soerjomataram I.
        • Siegel R.L.
        • Torre L.A.
        • Jemal A.
        Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA Cancer J. Clin. 2018; 68: 394-424https://doi.org/10.3322/caac.21492
        • Sato Y.
        • Mizusawa J.
        • Katayama H.
        • Nakamura K.
        • Fukagawa T.
        • Katai H.
        • Haruta S.
        • Yamada M.
        • Takagi M.
        • Tamura S.
        • Yoshimura T.
        • Tokunaga M.
        • Yoshikawa T.
        • Boku N.
        • Sano T.
        • Sasako M.
        • Terashima M.
        Diagnosis of invasion depth in resectable advanced gastric cancer for neoadjuvant chemotherapy: An exploratory analysis of Japan clinical oncology group study: JCOG1302A, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of.
        Surg. Oncol. 2020; 46: 1074-1079https://doi.org/10.1016/j.ejso.2020.02.038
        • Kim A.Y.
        • Kim H.J.
        • Ha H.K.
        Gastric cancer by multidetector row CT: preoperative staging.
        Abdom. Imaging. 2005; 30: 465-472https://doi.org/10.1007/s00261-004-0273-5
        • Lee I.J.
        • Lee J.M.
        • Kim S.H.
        • Chang S.
        • Han J.K.
        • Choi B.I.
        • Lee H.-J.
        • Yang H.-K.
        • Lee K.U.
        Helical CT evaluation of the preoperative staging of gastric cancer in the remnant stomach.
        AJR Am. J. Roentgenol. 2009; 192: 902-908https://doi.org/10.2214/AJR.07.3520
        • Chen C.-Y.
        • Hsu J.-S.
        • Wu D.-C.
        • Kang W.-Y.
        • Hsieh J.-S.
        • Jaw T.-S.
        • Wu M.-T.
        • Liu G.-C.
        Gastric cancer: preoperative local staging with 3D multi-detector row CT–correlation with surgical and histopathologic results.
        Radiology. 2007; 242: 472-482https://doi.org/10.1148/radiol.2422051557
        • Tsurumaru D.
        • Miyasaka M.
        • Nishimuta Y.
        • Asayama Y.
        • Nishie A.
        • Kawanami S.
        • Oki E.
        • Hirahashi M.
        • Honda H.
        Differentiation of early gastric cancer with ulceration and resectable advanced gastric cancer using multiphasic dynamic multidetector CT.
        Eur. Radiol. 2016; 26: 1330-1337https://doi.org/10.1007/s00330-015-3938-2
        • Ge Y.
        • Su T.
        • Zhu J.
        • Deng X.
        • Zhang Q.
        • Chen J.
        • Hu Z.
        • Zheng H.
        • Liang D.
        ADAPTIVE-NET: deep computed tomography reconstruction network with analytical domain transformation knowledge.
        Quantit. Imaging Med. Surg. 2020; 10: 415-427https://doi.org/10.21037/qims.2019.12.12
        • Akagi M.
        • Nakamura Y.
        • Higaki T.
        • Narita K.
        • Honda Y.
        • Zhou J.
        • Yu Z.
        • Akino N.
        • Awai K.
        Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.
        Eur. Radiol. 2019; 29: 6163-6171https://doi.org/10.1007/s00330-019-06170-3
        • McLeavy C.M.
        • Chunara M.H.
        • Gravell R.J.
        • Rauf A.
        • Cushnie A.
        • Staley Talbot C.
        • Hawkins R.M.
        The future of CT: deep learning reconstruction.
        Clin. Radiol. 2021; 76: 407-415https://doi.org/10.1016/j.crad.2021.01.010
        • Kakinuma R.
        • Moriyama N.
        • Muramatsu Y.
        • Gomi S.
        • Suzuki M.
        • Nagasawa H.
        • Kusumoto M.
        • Aso T.
        • Muramatsu Y.
        • Tsuchida T.
        • Tsuta K.
        • Maeshima A.M.
        • Tochigi N.
        • Watanabe S.-I.
        • Sugihara N.
        • Tsukagoshi S.
        • Saito Y.
        • Kazama M.
        • Ashizawa K.
        • Awai K.
        • Honda O.
        • Ishikawa H.
        • Koizumi N.
        • Komoto D.
        • Moriya H.
        • Oda S.
        • Oshiro Y.
        • Yanagawa M.
        • Tomiyama N.
        • Asamura H.
        • Gelovani J.G.
        Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner.
        PLoS ONE. 2015; 10: e0137165https://doi.org/10.1371/journal.pone.0137165
        • Kaza R.K.
        • Platt J.F.
        • Goodsitt M.M.
        • Al-Hawary M.M.
        • Maturen K.E.
        • Wasnik A.P.
        • Pandya A.
        Emerging techniques for dose optimization in abdominal CT.
        Radiographics: Rev. Publ. Radiol. Soc. North America Inc. 2014; 34: 4-17https://doi.org/10.1148/rg.341135038
        • Sun J.
        • Zhang Q.
        • Duan X.
        • Zhang C.
        • Wang P.
        • Jia C.
        • Liu Y.
        • Peng Y.
        Application of a full model-based iterative reconstruction (MBIR) in 80 kVp ultra-low-dose paranasal sinus CT imaging of pediatric patients.
        Radiol. Med. (Torino). 2018; 123: 117-124https://doi.org/10.1007/s11547-017-0812-0
        • Hoxworth J.M.
        • Lal D.
        • Fletcher G.P.
        • Patel A.C.
        • He M.
        • Paden R.G.
        • Hara A.K.
        Radiation dose reduction in paranasal sinus CT using model-based iterative reconstruction.
        AJNR Am. J. Neuroradiol. 2014; 35: 644-649https://doi.org/10.3174/ajnr.A3749
        • Aurumskjold M.L.
        • Ydstrom K.
        • Tingberg A.
        • Soderberg M.
        Improvements to image quality using hybrid and model-based iterative reconstructions: a phantom study.
        Acta Radiol. (Stockholm, Sweden). 1987; 58: 53-61https://doi.org/10.1177/0284185116631180
        • LeCun Y.
        • Bengio Y.
        • Hinton G.
        Deep learning.
        Nature. 2015; 521: 436-444https://doi.org/10.1038/nature14539
        • Ikoma N.
        • Blum M.
        • Chiang Y.-J.
        • Estrella J.S.
        • Roy-Chowdhuri S.
        • Fournier K.
        • Mansfield P.
        • Ajani J.A.
        • Badgwell B.D.
        Survival rates in T1 and T2 gastric cancer: A Western report.
        J. Surg. Oncol. 2016; 114: 602-606https://doi.org/10.1002/jso.24382
        • Mazzei M.A.
        • Nardone V.
        • Di Giacomo L.
        • Bagnacci G.
        • Gentili F.
        • Tini P.
        • Marrelli D.
        • Volterrani L.
        The role of delta radiomics in gastric cancer.
        Quantit. Imaging Med. Surg. 2018; 8: 719-721https://doi.org/10.21037/qims.2018.07.08
        • Mazzei M.A.
        • Cioffi Squitieri N.
        • Vindigni C.
        • Guerrini S.
        • Gentili F.
        • Sadotti G.
        • Mercuri P.
        • Righi L.
        • Lucii G.
        • Mazzei F.G.
        • Marrelli D.
        • Volterrani L.
        Gastrointestinal stromal tumors (GIST): a proposal of a “CT-based predictive model of Miettinen index” in predicting the risk of malignancy.
        Abdominal Radiol. (New York). 2020; 45: 2989-2996https://doi.org/10.1007/s00261-019-02209-7
        • Pickhardt P.J.
        • Asher D.B.
        Wall thickening of the gastric antrum as a normal finding: multidetector CT with cadaveric comparison.
        AJR Am. J. Roentgenol. 2003; 181: 973-979https://doi.org/10.2214/ajr.181.4.1810973
        • Narita K.
        • Nakamura Y.
        • Higaki T.
        • Akagi M.
        • Honda Y.
        • Awai K.
        Deep learning reconstruction of drip-infusion cholangiography acquired with ultra-high-resolution computed tomography.
        Abdominal Radiol. (New York). 2020; 45: 2698-2704https://doi.org/10.1007/s00261-020-02508-4
      1. Japan Network for Research and Information on Medical Exposure (J-RIME). National Diagnostic Reference Levels in Japan (2020). Japan DRLs 2020. http://www.radher.jp/J-RIME/report/DRL2020_Engver.pdf.