Advertisement

Computed tomography-based radiomics for predicting lymphovascular invasion in rectal cancer

Published:November 22, 2021DOI:https://doi.org/10.1016/j.ejrad.2021.110065

      Highlights

      • Lymphovascular invasion is an unfavorable prognostic factor in rectal cancer.
      • External validation allows more insight to generalizability of the model.
      • Radiomics of peritumoral regions can offer biological information about tumors.

      Abstract

      Purpose

      To develop and externally validate a computed tomography (CT)-based radiomics model for predicting lymphovascular invasion (LVI) before treatment in patients with rectal cancer (RC).

      Method

      This retrospective study enrolled 351 patients with RC from three hospitals between March 2018 and March 2021. These patients were assigned to one of the following three groups: training set (n = 239, from hospital 1), internal validation set (n = 60, from hospital 1), and external validation set (n = 52, from hospitals 2 and 3). Large amounts of radiomics features were extracted from the intratumoral and peritumoral regions in the portal venous phase contrast-enhanced CT images. The score of radiomics features (Rad-score) was calculated by performing logistic regression analysis following the L1-based method. A combined model (Rad-score + clinical factors) was developed in the training cohort and validated internally and externally. The models were compared using the area under the receiver operating characteristic curve (AUC).

      Results

      Of the 351 patients, 106 (30.2%) had an LVI + tumor. Rad-score (comprised of 22 features) was significantly higher in the LVI + group than in the LVI- group (0.60 ± 0.17 vs. 0.42 ± 0.19, P = 0.001). The combined model obtained good predictive performance in the training cohort (AUC = 0.813 [95% CI: 0.758–0.861]), with robust results in internal and external validations (AUC = 0.843 [95% CI: 0.726–0.924] and 0.807 [95% CI: 0.674–0.903]).

      Conclusions

      The proposed combined model demonstrated the potential to predict LVI preoperatively in patients with RC.

      Keywords

      Abbreviations:

      LVI (lymphovascular invasion), RC (rectal cancer), CT (computed tomography), ROC (receiver operating characteristic), AUC (the area under the receiver operating characteristic curve), CI (confidence interval), MRI (magnetic resonance imaging), HE (hematoxylin-eosin), cT (CT-reported T stage), cN (CT-reported N stage), VOI (volume of interest), ICC (intra (inter)-observer correlation coefficient), CA19-9 (carbohydrate antigen 19-9), OR (odds ratio), CEA (carcinoembryonic antigen), CA125 (carbohydrate antigen 125), SEN (sensitivity), SPE (specificity)
      To read this article in full you will need to make a payment

      References

        • Mattiuzzi C.
        • Sanchis-Gomar F.
        • Lippi G.
        Concise update on colorectal cancer epidemiology.
        Ann. Transl. Med. 2019; 7: 609https://doi.org/10.21037/atm.2019.07.91
        • Morini A.
        • Annicchiarico A.
        • Romboli A.
        • Ricco' M.
        • Crafa P.
        • Montali F.
        • Dell'Abate P.
        • Costi R.
        Retrospective survival analysis of stage II-III rectal cancer: tumour regression grade, grading and lymphovascular invasion are the only predictors.
        ANZ J. Surg. 2021; 91: E112-E118https://doi.org/10.1111/ans.16476
        • Kataoka M.
        • Hirano Y.
        • Ishii T.
        • Kondo H.
        • Asari M.
        • Ishikawa S.
        • Kataoka A.
        • Fujii T.
        • Shimamura S.
        • Yamaguchi S.
        Impact of Lymphovascular Invasion in Patients With Stage II Colorectal Cancer: A Propensity Score-matched Study.
        In Vivo. 2021; 35: 525-531
        • Zhong J.
        • Yang S.
        • Chen R.
        • Zhou Y.
        • Ye M.
        • Miao L.
        • Xue Z.
        • Lu G.
        Prognostic Value of Lymphovascular Invasion in Patients with Stage III Colorectal Cancer: A Retrospective Study.
        Med. Sci. Monit. 2019 Aug; 13: 6043-6050https://doi.org/10.12659/MSM.918133
        • Lim S.
        • Yu C.
        • Jang S.
        • Kim T.
        • Kim J.
        • Kim J.
        Prognostic significance of lymphovascular invasion in sporadic colorectal cancer.
        Dis. Colon. Rectum. 2010 Apr; 53: 377-384https://doi.org/10.1007/DCR.0b013e3181cf8ae5
        • Compton C.
        • Fielding L.
        • Burgart L.
        • Conley B.
        • Cooper H.
        • Hamilton S.
        • Hammond M.
        • Henson D.
        • Hutter R.
        • Nagle R.
        • Nielsen M.
        • Sargent D.
        • Taylor C.
        • Welton M.
        • Willett C.
        Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999.
        Arch. Pathol. Lab. Med. 2000; 124: 979-994https://doi.org/10.5858/2000-124-0979-PFICC
        • Knijn N.
        • van Exsel U.E.M.
        • de Noo M.E.
        • Nagtegaal I.D.
        The value of intramural vascular invasion in colorectal cancer - a systematic review and meta-analysis.
        Histopathology. 2018; 72: 721-728https://doi.org/10.1111/his.2018.72.issue-510.1111/his.13404
        • Betge J.
        • Pollheimer M.
        • Lindtner R.
        • Kornprat P.
        • Schlemmer A.
        • Rehak P.
        • Vieth M.
        • Hoefler G.
        • Langner C.
        Intramural and extramural vascular invasion in colorectal cancer: prognostic significance and quality of pathology reporting.
        Cancer. 2012 Feb 1; 118: 628-638https://doi.org/10.1002/cncr.26310
        • Sohn B.
        • Lim J.
        • Kim H.
        • Myoung S.
        • Choi J.
        • Kim N.
        • Kim M.
        MRI-detected extramural vascular invasion is an independent prognostic factor for synchronous metastasis in patients with rectal cancer.
        Eur. Radiol. 2015 May; 25: 1347-1355https://doi.org/10.1007/s00330-014-3527-9
        • Ale Ali H.
        • Kirsch R.
        • Razaz S.
        • Jhaveri A.
        • Thipphavong S.
        • Kennedy E.
        • Jhaveri K.
        Extramural venous invasion in rectal cancer: overview of imaging, histopathology, and clinical implications.
        Abdom. Radiol. (NY). 2019 Jan; 44: 1-10https://doi.org/10.1007/s00261-018-1673-2
        • Chand M.
        • Bhangu A.
        • Wotherspoon A.
        • Stamp G.
        • Swift R.
        • Chau I.
        • Tekkis P.
        • Brown G.
        EMVI-positive stage II rectal cancer has similar clinical outcomes as stage [III] disease following pre-operative chemoradiotherapy.
        Ann. Oncol. 2014 Apr; 25: 858-863
        • Heo S.
        • Kim J.
        • Shin S.
        • Jeong Y.
        • Kang H.
        Multimodal imaging evaluation in staging of rectal cancer.
        World J. Gastroenterol. 2014 Apr 21; 20: 4244-4255https://doi.org/10.3748/wjg.v20.i15.4244
        • Mayerhoefer M.
        • Materka A.
        • Langs G.
        • Häggström I.
        • Szczypiński P.
        • Gibbs P.
        • Cook G.
        Introduction to Radiomics.
        J. Nucl. Med. 2020 Apr; 61: 488-495https://doi.org/10.2967/jnumed.118.222893
        • Ge Y.-X.
        • Xu W.-B.
        • Wang Z.i.
        • Zhang J.-Q.
        • Zhou X.-Y.
        • Duan S.-F.
        • Hu S.-D.
        • Fei B.-J.
        Prognostic value of CT radiomics in evaluating lymphovascular invasion in rectal cancer: Diagnostic performance based on different volumes of interest.
        J. Xray Sci. Technol. 2021; 29: 663-674https://doi.org/10.3233/XST-210877
        • Zhang Y.
        • He K.
        • Guo Y.
        • Liu X.
        • Yang Q.
        • Zhang C.
        • Xie Y.
        • Mu S.
        • Guo Y.
        • Fu Y.
        • Zhang H.
        A Novel Multimodal Radiomics Model for Preoperative Prediction of Lymphovascular Invasion in Rectal Cancer.
        Front Oncol. 2020 Apr; 7: 457https://doi.org/10.3389/fonc.2020.00457
        • Kim Y.
        • Chung J.-J.
        • Yu J.-S.
        • Cho E.-S.
        • Kim J.H.
        Preoperative evaluation of lymphovascular invasion using high-resolution pelvic magnetic resonance in patients with rectal cancer: a 2-year follow-up study.
        J. Comput. Assist. Tomogr. 2013; 37: 583-588https://doi.org/10.1097/RCT.0b013e31828d616a
        • Benchoufi M.
        • Matzner-Lober E.
        • Molinari N.
        • Jannot A.
        • Soyer P.
        Interobserver agreement issues in radiology.
        Diagn. Interv. Imaging. 2020 Oct; 101: 639-641https://doi.org/10.1016/j.diii.2020.09.001
        • van Griethuysen J.
        • Fedorov A.
        • Parmar C.
        • Hosny A.
        • Aucoin N.
        • Narayan V.
        • Beets-Tan R.
        • Fillion-Robin J.
        • Pieper S.
        • Aerts H.
        Computational Radiomics System to Decode the Radiographic Phenotype.
        Cancer Res. 2017 Nov 1; 77: e104-e107https://doi.org/10.1158/0008-5472.CAN-17-0339
        • Alba A.
        • Agoritsas T.
        • Walsh M.
        • Hanna S.
        • Iorio A.
        • Devereaux P.
        • McGinn T.
        • Guyatt G.
        Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature.
        JAMA. 2017 Oct 10; 318: 1377-1384https://doi.org/10.1001/jama.2017.12126
        • Vickers A.J.
        • Elkin E.B.
        Decision curve analysis: a novel method for evaluating prediction models.
        Med. Decis. Making. 2006; 26: 565-574https://doi.org/10.1177/0272989X06295361
        • Roldán-Nofuentes J.
        • Amro R.
        Combination of the weighted kappa coefficients of two binary diagnostic tests.
        J. Biopharm. Stat. 2018; 28: 909-926https://doi.org/10.1080/10543406.2017.1402781
        • Clancy C.
        • Flanagan M.
        • Marinello F.
        • O'Neill B.
        • McNamara D.
        • Burke J.
        Comparative Oncologic Outcomes of Upper Third Rectal Cancers: A Meta-analysis.
        Clin. Colorectal. Cancer. 2019 Dec; 18: e361-e367https://doi.org/10.1016/j.clcc.2019.07.004
        • Schmoll H.J.
        • Van Cutsem E.
        • Stein A.
        • Valentini V.
        • Glimelius B.
        • Haustermans K.
        • Nordlinger B.
        • van de Velde C.J.
        • Balmana J.
        • Regula J.
        • Nagtegaal I.D.
        • Beets-Tan R.G.
        • Arnold D.
        • Ciardiello F.
        • Hoff P.
        • Kerr D.
        • Köhne C.H.
        • Labianca R.
        • Price T.
        • Scheithauer W.
        • Sobrero A.
        • Tabernero J.
        • Aderka D.
        • Barroso S.
        • Bodoky G.
        • Douillard J.Y.
        • El Ghazaly H.
        • Gallardo J.
        • Garin A.
        • Glynne-Jones R.
        • Jordan K.
        • Meshcheryakov A.
        • Papamichail D.
        • Pfeiffer P.
        • Souglakos I.
        • Turhal S.
        • Cervantes A.
        ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making.
        Ann. Oncol. 2012 Oct; 23: 2479-2516https://doi.org/10.1093/annonc/mds236