Advertisement

Sources of error in bone mineral density estimates from quantitative CT

Published:October 15, 2021DOI:https://doi.org/10.1016/j.ejrad.2021.110001

      Highlights

      • Bone density estimates from CT are highly useful but can be highly variable.
      • Error can result from factors related to the scanner, acquisition, patient, and calibration.
      • Thorough understanding and management of error sources are essential.

      Abstract

      Bone mineral density (BMD) estimates from quantitative computed tomography (QCT) have proven useful for opportunistic screening of osteoporosis, treatment monitoring, and bone strength measurement. These estimates are subject to bias and variance from a variety of sources related to the imaging equipment, methods applied in the estimation procedure, and the patients themselves. In this article, we review the literature to describe the sources and sizes of error in spine and hip BMD estimates from single-energy QCT that can result from factors related to the scanner, imaging techniques, imaging subject, calibration phantom, and calibration approach. We also describe the baseline variance that can be expected based on repeatability and reproducibility studies. Though reproducible BMD estimates may be achievable with QCT, a thorough understanding of the potential sources of error and their size relative to the diagnostic task is essential to their appropriate and meaningful interpretation.

      Keywords

      Abbreviations:

      BMD (Bone mineral density), CECT (Contrast-enhanced CT), CI (Confidence interval), CV (Coefficient of variation), CVRMS (Root mean square coefficient of variation), DECT (Dual-energy CT), DXA (Dual-energy x-ray absorptiometry), FOV (Field of view), HA (Hydroxyapatite), HU (Hounsfield units), IC (Internal calibration), IV (Intra-venous), kVp (Peak tube voltage), LSC (Least significant change), mAs (Current-time product), PV (Portal venous), ROI (Region of interest), SECT (Single-energy CT), QA (Quality assurance), QCT (Quantitative CT)
      To read this article in full you will need to make a payment

      References

        • Engelke K.
        Quantitative computed tomography-current status and new developments.
        J. Clin. Densitom. 2017; 20: 309-321https://doi.org/10.1016/j.jocd.2017.06.017
        • Engelke K.
        • Adams J.E.
        • Armbrecht G.
        • Augat P.
        • Bogado C.E.
        • Bouxsein M.L.
        • Felsenberg D.
        • Ito M.
        • Prevrhal S.
        • Hans D.B.
        • Lewiecki E.M.
        Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions.
        J. Clin. Densitom. 2008; 11: 123-162https://doi.org/10.1016/j.jocd.2007.12.010
        • Engelke K.
        • Lang T.
        • Khosla S.
        • Qin L.
        • Zysset P.
        • Leslie W.D.
        • Shepherd J.A.
        • Schousboe J.T.
        Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: the 2015 ISCD official positions-Part I.
        J. Clin. Densitom. 2015; 18: 338-358https://doi.org/10.1016/j.jocd.2015.06.012
        • Engelke K.
        • Lang T.
        • Khosla S.
        • Qin L.
        • Zysset P.
        • Leslie W.D.
        • Shepherd J.A.
        • Shousboe J.T.
        Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions-part III.
        J. Clin. Densitom. 2015; 18: 393-407https://doi.org/10.1016/j.jocd.2015.06.010
        • Zysset P.
        • Qin L.
        • Lang T.
        • Khosla S.
        • Leslie W.D.
        • Shepherd J.A.
        • Schousboe J.T.
        • Engelke K.
        Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD official positions-part II.
        J. Clin. Densitom. 2015; 18: 359-392https://doi.org/10.1016/j.jocd.2015.06.011
      1. A.C.o. Radiology, ACR-SPR-SSR practice parameter for the performance of musculoskeletal quantitative computed tomography (QCT), 2018. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf?la=en. (Accessed February 2021).

        • Troy K.L.
        • Edwards W.B.
        Practical considerations for obtaining high quality quantitative computed tomography data of the skeletal system.
        Bone. 2018; 110: 58-65https://doi.org/10.1016/j.bone.2018.01.013
        • Cann C.E.
        Quantitative CT for determination of bone mineral density: a review.
        Radiology. 1988; 166: 509-522https://doi.org/10.1148/radiology.166.2.3275985
        • Bonaretti S.
        • Carpenter R.D.
        • Saeed I.
        • Burghardt A.J.
        • Yu L.
        • Bruesewitz M.
        • Khosla S.
        • Lang T.
        Novel anthropomorphic hip phantom corrects systemic interscanner differences in proximal femoral vBMD.
        Phys Med Biol. 2014; 59: 7819-7834https://doi.org/10.1088/0031-9155/59/24/7819
        • Carpenter R.D.
        • Saeed I.
        • Bonaretti S.
        • Schreck C.
        • Keyak J.H.
        • Streeper T.
        • Harris T.B.
        • Lang T.F.
        Inter-scanner differences in in vivo QCT measurements of the density and strength of the proximal femur remain after correction with anthropomorphic standardization phantoms.
        Med. Eng. Phys. 2014; 36: 1225-1232https://doi.org/10.1016/j.medengphy.2014.06.010
        • Zhao Y.
        • Li K.
        • Duanmu Y.
        • Wang L.
        • Xu X.
        • Zhang Y.
        • Tang J.
        • Zhang Y.
        • Li Z.
        • Hind K.
        • Blake G.M.
        • Cheng X.
        Accuracy, linearity and precision of spine QCT vBMD phantom measurements for different brands of CT scanner: a multicentre study.
        J Clin Densitom. 2021; https://doi.org/10.1016/j.jocd.2021.02.004
        • Michalski A.S.
        • Edwards W.B.
        • Boyd S.K.
        The influence of reconstruction kernel on bone mineral and strength estimates using quantitative computed tomography and finite element analysis.
        J. Clin. Densitom. 2019; 22: 219-228https://doi.org/10.1016/j.jocd.2017.09.001
        • Giambini H.
        • Dragomir-Daescu D.
        • Huddleston P.M.
        • Camp J.J.
        • An K.N.
        • Nassr A.
        The effect of quantitative computed tomography acquisition protocols on bone mineral density estimation.
        J. Biomech. Eng. 2015; 137114502https://doi.org/10.1115/1.4031572
        • Garner H.W.
        • Paturzo M.M.
        • Gaudier G.
        • Pickhardt P.J.
        • Wessell D.E.
        Variation in attenuation in L1 trabecular bone at different tube voltages: caution is warranted when screening for osteoporosis with the use of opportunistic CT.
        AJR Am. J. Roentgenol. 2017; 208: 165-170https://doi.org/10.2214/AJR.16.16744
        • Bligh M.
        • Bidaut L.
        • White R.A.
        • Murphy Jr., W.A.
        • Stevens D.M.
        • Cody D.D.
        Helical multidetector row quantitative computed tomography (QCT) precision.
        Acad. Radiol. 2009; 16: 150-159https://doi.org/10.1016/j.acra.2008.08.007
        • Mann C.
        • Ziegeler K.
        • Mews J.
        • Plaschke M.
        • Issever A.S.
        Bone mineral density assessment using iterative reconstruction compared with quantitative computed tomography as the standard of reference.
        Sci. Rep. 2018; 8: 15095https://doi.org/10.1038/s41598-018-33444-5
        • Wu Y.
        • Jiang Y.
        • Han X.
        • Wang M.
        • Gao J.
        Application of low-tube current with iterative model reconstruction on Philips Brilliance iCT Elite FHD in the accuracy of spinal QCT using a European spine phantom.
        Quant. Imaging Med. Surg. 2018; 8: 32-38
        • Bolstad K.
        • Flatabo S.
        • Aadnevik D.
        • Dalehaug I.
        • Vetti N.
        Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants.
        Acta Radiol. 2018; 59: 1110-1118https://doi.org/10.1177/0284185117751278
        • Yu E.W.
        • Thomas B.J.
        • Brown J.K.
        • Finkelstein J.S.
        Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT.
        J. Bone Miner. Res. 2012; 27: 119-124https://doi.org/10.1002/jbmr.506
        • Yu L.
        • Li H.
        • Fletcher J.G.
        • McCollough C.H.
        Automatic selection of tube potential for radiation dose reduction in CT: a general strategy.
        Med. Phys. 2010; 37: 234-243https://doi.org/10.1118/1.3264614
        • Sfeir J.G.
        • Drake M.T.
        • Atkinson E.J.
        • Achenbach S.J.
        • Camp J.J.
        • Tweed A.J.
        • McCready L.K.
        • Yu L.
        • Adkins M.C.
        • Amin S.
        • Khosla S.
        Evaluation of cross-sectional and longitudinal changes in volumetric bone mineral density in postmenopausal women using single- versus dual-energy quantitative computed tomography.
        Bone. 2018; 112: 145-152https://doi.org/10.1016/j.bone.2018.04.023
        • Bauer J.S.
        • Henning T.D.
        • Mueller D.
        • Lu Y.
        • Majumdar S.
        • Link T.M.
        Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors.
        AJR Am. J. Roentgenol. 2007; 188: 1294-1301https://doi.org/10.2214/AJR.06.1006
        • Ziemlewicz T.J.
        • Maciejewski A.
        • Binkley N.
        • Brett A.D.
        • Brown J.K.
        • Pickhardt P.J.
        Direct comparison of unenhanced and contrast-enhanced CT for opportunistic proximal femur bone mineral density measurement: implications for osteoporosis screening.
        AJR Am. J. Roentgenol. 2016; 206: 694-698https://doi.org/10.2214/AJR.15.15128
        • Habashy A.H.
        • Yan X.
        • Brown J.K.
        • Xiong X.
        • Kaste S.C.
        Estimation of bone mineral density in children from diagnostic CT images: a comparison of methods with and without an internal calibration standard.
        Bone. 2011; 48: 1087-1094https://doi.org/10.1016/j.bone.2010.12.012
        • Baum T.
        • Muller D.
        • Dobritz M.
        • Rummeny E.J.
        • Link T.M.
        • Bauer J.S.
        BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software.
        Eur. J. Radiol. 2011; 80: e140-e145https://doi.org/10.1016/j.ejrad.2010.08.034
        • Pickhardt P.J.
        • Lauder T.
        • Pooler B.D.
        • Munoz Del Rio A.
        • Rosas H.
        • Bruce R.J.
        • Binkley N.
        Effect of IV contrast on lumbar trabecular attenuation at routine abdominal CT: correlation with DXA and implications for opportunistic osteoporosis screening.
        Osteoporos. Int. 2016; 27: 147-152https://doi.org/10.1007/s00198-015-3224-9
        • Acu K.
        • Scheel M.
        • Issever A.S.
        Time dependency of bone density estimation from computed tomography with intravenous contrast agent administration.
        Osteoporos. Int. 2014; 25: 535-542https://doi.org/10.1007/s00198-013-2440-4
        • Ziemlewicz T.J.
        • Maciejewski A.
        • Binkley N.
        • Brett A.D.
        • Brown J.K.
        • Pickhardt P.J.
        Opportunistic quantitative CT bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison With DXA in 355 adults.
        J. Bone Miner. Res. 2016; 31: 1835-1840https://doi.org/10.1002/jbmr.2856
        • Pickhardt P.J.
        • Pooler B.D.
        • Lauder T.
        • del Rio A.M.
        • Bruce R.J.
        • Binkley N.
        Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications.
        Ann. Int. Med. 2013; 158: 588-595https://doi.org/10.7326/0003-4819-158-8-201304160-00003
        • Kaesmacher J.
        • Liebl H.
        • Baum T.
        • Kirschke J.S.
        Bone mineral density estimations from routine multidetector computed tomography: a comparative study of contrast and calibration effects.
        J. Comput. Assist. Tomogr. 2017; 41: 217-223https://doi.org/10.1097/RCT.0000000000000518
        • Szczykutowicz T.P.
        • DuPlissis A.
        • Pickhardt P.J.
        Variation in CT number and image noise uniformity according to patient positioning in MDCT.
        AJR Am. J. Roentgenol. 2017; 208: 1064-1072https://doi.org/10.2214/AJR.16.17215
        • Brown J.K.
        • Timm W.
        • Bodeen G.
        • Chason A.
        • Perry M.
        • Vernacchia F.
        • DeJournett R.
        Asynchronously calibrated quantitative bone densitometry.
        J. Clin. Densitom. 2017; 20: 216-225https://doi.org/10.1016/j.jocd.2015.11.001
        • Feng Z.
        • Ziv I.
        • Rho J.
        • Han S.
        • Fishkin Z.
        Effects of titanium prosthesis, offset and size of field of view on bone mineral density measurements using quantitative computed tomography.
        Br. J. Radiol. 2000; 73: 498-503https://doi.org/10.1259/bjr.73.869.10884746
        • Sabo M.T.
        • Pollmann S.I.
        • Gurr K.R.
        • Bailey C.S.
        • Holdsworth D.W.
        Use of co-registered high-resolution computed tomography scans before and after screw insertion as a novel technique for bone mineral density determination along screw trajectory.
        Bone. 2009; 44: 1163-1168https://doi.org/10.1016/j.bone.2009.02.007
        • Lee D.C.
        • Hoffmann P.F.
        • Kopperdahl D.L.
        • Keaveny T.M.
        Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision.
        Bone. 2017; 103: 325-333https://doi.org/10.1016/j.bone.2017.07.029
        • Winsor C.
        • Li X.
        • Qasim M.
        • Henak C.R.
        • Pickhardt P.J.
        • Ploeg H.
        • Viceconti M.
        Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses.
        Bone. 2021; 143115759https://doi.org/10.1016/j.bone.2020.115759
        • Michalski A.S.
        • Besler B.A.
        • Michalak G.J.
        • Boyd S.K.
        CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans.
        Med. Eng. Phys. 2020; 78: 55-63https://doi.org/10.1016/j.medengphy.2020.01.009
        • Eggermont F.
        • Verdonschot N.
        • van der Linden Y.
        • Tanck E.
        Calibration with or without phantom for fracture risk prediction in cancer patients with femoral bone metastases using CT-based finite element models.
        PLoS ONE. 2019; 14e0220564https://doi.org/10.1371/journal.pone.0220564
        • Aubrey J.
        • Esfandiari N.
        • Baracos V.E.
        • Buteau F.A.
        • Frenette J.
        • Putman C.T.
        • Mazurak V.C.
        Measurement of skeletal muscle radiation attenuation and basis of its biological variation.
        Acta Physiol. (Oxf). 2014; 210: 489-497https://doi.org/10.1111/apha.12224
        • Poltronieri T.S.
        • de Paula N.S.
        • Chaves G.V.
        Assessing skeletal muscle radiodensity by computed tomography: an integrative review of the applied methodologies.
        Clin. Physiol. Funct. Imaging. 2020; 40: 207-223https://doi.org/10.1111/cpf.12629
        • Engelke K.
        • Museyko O.
        • Wang L.
        • Laredo J.D.
        Quantitative analysis of skeletal muscle by computed tomography imaging-state of the art.
        J. Orthop. Translat. 2018; 15: 91-103https://doi.org/10.1016/j.jot.2018.10.004
        • Mueller D.K.
        • Kutscherenko A.
        • Bartel H.
        • Vlassenbroek A.
        • Ourednicek P.
        • Erckenbrecht J.
        Phantom-less QCT BMD system as screening tool for osteoporosis without additional radiation.
        Eur. J. Radiol. 2011; 79: 375-381https://doi.org/10.1016/j.ejrad.2010.02.008
        • Qanadli S.D.
        • Jouannic A.M.
        • Dehmeshki J.
        • Lu T.L.
        CT attenuation values of blood and myocardium: rationale for accurate coronary artery calcifications detection with multi-detector CT.
        PLoS ONE. 2015; 10e0124175https://doi.org/10.1371/journal.pone.0124175
      2. N. Abdullayev, V.F. Neuhaus, G. Bratke, S. Voss, N. Grosse Hokamp, M. Hellmich, B. Krug, D. Maintz, J. Borggrefe, Effects of Contrast Enhancement on In-Body Calibrated Phantomless Bone Mineral Density Measurements in Computed Tomography, J. Clin. Densitom. 21(3) (2018) 360-366. https://doi.org/10.1016/j.jocd.2017.10.001.

        • Prado M.
        • Khosla S.
        • Chaput C.
        • Giambini H.
        Opportunistic application of phantom-less calibration methods for fracture risk prediction using QCT/FEA.
        Eur. Radiol. 2021; https://doi.org/10.1007/s00330-021-08071-w
        • Wang L.
        • Su Y.
        • Wang Q.
        • Duanmu Y.
        • Yang M.
        • Yi C.
        • Cheng X.
        Validation of asynchronous quantitative bone densitometry of the spine: Accuracy, short-term reproducibility, and a comparison with conventional quantitative computed tomography.
        Sci. Rep. 2017; 7: 6284https://doi.org/10.1038/s41598-017-06608-y
        • Engelke K.
        • Mastmeyer A.
        • Bousson V.
        • Fuerst T.
        • Laredo J.D.
        • Kalender W.A.
        Reanalysis precision of 3D quantitative computed tomography (QCT) of the spine.
        Bone. 2009; 44: 566-572https://doi.org/10.1016/j.bone.2008.11.008
        • Therkildsen J.
        • Thygesen J.
        • Winther S.
        • Svensson M.
        • Hauge E.M.
        • Bottcher M.
        • Ivarsen P.
        • Jorgensen H.S.
        Vertebral bone mineral density measured by quantitative computed tomography with and without a calibration phantom: a comparison between 2 different software solutions.
        J. Clin. Densitom. 2018; 21: 367-374https://doi.org/10.1016/j.jocd.2017.12.003
        • Woisetschlager M.
        • Hagg M.
        • Spangeus A.
        Computed tomography-based opportunistic osteoporosis assessment: a comparison of two software applications for lumbar vertebral volumetric bone mineral density measurements.
        Quant Imaging Med Surg. 2021; 11: 1333-1342
        • Telfer S.
        • Brunnquell C.L.
        • Allen J.D.
        • Linnau K.F.
        • Zamora D.
        • Kleweno C.P.
        The effect of age and sex on pelvic bone density measured opportunistically in clinical CT scans.
        J. Orthop. Res. 2021; 39: 485-492https://doi.org/10.1002/jor.24792
        • Blake G.M.
        • Fogelman I.
        How important are BMD accuracy errors for the clinical interpretation of DXA scans?.
        J. Bone Miner. Res. 2008; 23: 457-462https://doi.org/10.1359/jbmr.071119
        • Rhodes L.A.
        • Cooper W.
        • Oldroyd B.
        • Hind K.
        Cross-calibration of a GE iDXA and Prodigy for total and regional body bone parameters: the importance of using cross-calibration equations for longitudinal monitoring after a system upgrade.
        J. Clin. Densitom. 2014; 17: 496-504https://doi.org/10.1016/j.jocd.2013.09.009
        • Genant H.K.
        • Grampp S.
        • Gluer C.C.
        • Faulkner K.G.
        • Jergas M.
        • Engelke K.
        • Hagiwara S.
        • Van Kuijk C.
        Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results.
        J. Bone Miner. Res. 1994; 9: 1503-1514https://doi.org/10.1002/jbmr.5650091002
        • Jankowski L.G.
        • Warner S.
        • Gaither K.
        • Lenchik L.
        • Fan B.
        • Lu Y.
        • Shepherd J.
        Cross-calibration, least significant change and quality assurance in multiple dual-energy X-ray absorptiometry scanner environments: 2019 ISCD official position.
        J. Clin. Densitom. 2019; 22: 472-483https://doi.org/10.1016/j.jocd.2019.09.001