Advertisement

18F-FDG PET/CT in immunocompetent patients with primary central nervous system lymphoma: Differentiation from glioblastoma and correlation with DWI

      Highlights

      • We found that FDG PET/CT was effective for differentiating PCNSL from GBM.
      • Both SUVmax and T/N ratio were reliable measures for differentiating PCNSL from GBM.
      • FDG metabolism indices were inversely proportional to the rADCs of PCNSL lesions.

      Abstract

      Objectives

      18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is useful for the detection of cancerous lesions, and FDG uptake is related to the apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) of extracranial tumors. The purpose of our study was to investigate the ability of FDG PET/CT in distinguishing primary central nervous system lymphoma (PCNSL) from glioblastoma multiforme (GBM) and to explore the relationship between 18F-FDG uptake and the ADC in patients with PCNSL.

      Methods

      We reviewed 92 patients (40 with PCNSL and 52 with GBM) who underwent FDG PET/CT scans at disease onset. The maximum standardized uptake value (SUVmax), tumor to normal contralateral cortex activity (T/N) ratio, SUVmean, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of tumor lesions were calculated. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic performance for FDG PET-related parameters to differentiate PCNSL from GBM. Twenty-eight patients with PCNSL (with 34 lesions) also underwent diffusion-weighted imaging. Pearson’s correlation analysis was used to assess the relation between SUV- and ADC-derived parameters.

      Results

      The SUVmax, T/N ratio, SUVmean, and TLG values were significantly higher in PCNSL than in GBM. Comparative ROC analysis indicated that the SUVmax had a greater area under the curve (AUC) of 0.910 than the T/N ratio (0.905, P = .85), SUVmean (0.836, P = .0006), or TLG (0.641, P < 0.0001). The T/N ratio had the highest specificity (94.23%) for differentiating PCNSL from GBM, while the SUVmax had the most optimal sensitivity (92.31%). Further combined analysis of the indices did not significantly improve the AUC. Moderate inverse correlations between the SUVmax, SUVmean, TLG, and the ADC ratio (rADC) were found in PCNSLs (r = −0.526, P = .002; r = −0.504, P = .004; and r = −0.483, P = .006; respectively).

      Conclusions

      The SUVmax and T/N ratio may be reliable measures for differentiating PCNSLs from GBMs. Additionally, FDG metabolism indices were inversely proportional to the rADCs of PCNSL lesions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Olson J.E.
        • Janney C.A.
        • Rao R.D.
        • Cerhan J.R.
        • Kurtin P.J.
        • Schiff D.
        • Kaplan R.S.
        • O’Neill B.P.
        The continuing increase in the incidence of primary central nervous system non-hodgkin lymphoma: a surveillance, epidemiology, and end results analysis.
        Cancer. 2002; 95: 1504-1510
        • Rubenstein J.
        • Ferreri A.J.
        • Pittaluga S.
        Primary lymphoma of the central nervous system: epidemiology, pathology and current approaches to diagnosis, prognosis and treatment.
        Leuk. Lymphoma. 2008; 49: 43-51
        • Toh C.H.
        • Wei K.C.
        • Chang C.N.
        • Ng S.H.
        • Wong H.F.
        Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction.
        AJNR Am. J. Neuroradiol. 2013; 34: 1145-1149
        • Kawai N.
        • Miyake K.
        • Yamamoto Y.
        • Nishiyama Y.
        • Tamiya T.
        18F-FDG PET in the diagnosis and treatment of primary central nervous system lymphoma.
        BioMed. Res. Int. 2013; 2013: 247152
        • Mohile N.A.
        • Deangelis L.M.
        • Abrey L.E.
        The utility of body FDG PET in staging primary central nervous system lymphoma.
        Neuro Oncol. 2008; 10: 223-228
        • Karantanis D.
        • O’Neill B.P.
        • Subramaniam R.M.
        • Peller P.J.
        • Witte R.J.
        • Mullan B.P.
        • Wiseman G.A.
        Contribution of F-18 FDG PET-CT in the detection of systemic spread of primary central nervous system lymphoma.
        Clin. Nucl. Med. 2007; 32: 271-274
        • Lewitschnig S.
        • Gedela K.
        • Toby M.
        • Kulasegaram R.
        • Nelson M.
        • O'Doherty M.
        • Cook G.J.
        18F-FDG PET/CT in HIV-related central nervous system pathology.
        Eur. J. Nucl. Med. Mol. Imaging. 2013; 40: 1420-1427
        • Kosaka N.
        • Tsuchida T.
        • Uematsu H.
        • Kimura H.
        • Okazawa H.
        • Itoh H.H.
        18F-FDG PET of common enhancing malignant brain tumors.
        AJR Am. J. Roentgenol. 2008; 190 (W269-W365)
        • Yamaguchi S.
        • Hirata K.
        • Kobayashi H.
        • Shiga T.
        • Manabe O.
        • Kobayashi K.
        • Motegi H.
        • Terasaka S.
        • Houkin K.
        The diagnostic role of (18)F-FDG PET for primary central nervous system lymphoma.
        Ann. Nucl. Med. 2014; 28: 603-609
        • Shi X.C.
        • Zhang X.S.
        • Yi C.
        • Wang X.Y.
        • Chen Z.F.
        • Zhang B.
        The combination of 13N-ammonia and 18F-FDG in predicting primary central nervous system lymphomas in immunocompetent patients.
        Clin. Nucl. Med. 2013; 38: 98-102
        • Padma M.V.
        • Said S.
        • Jacobs M.
        • Hwang D.R.
        • Dunigan K.
        • Satter M.
        • Christian B.
        • Ruppert J.
        • Bernstein T.
        • Kraus G.
        • Mantil J.C.
        Prediction of pathology and survival by FDG PET in gliomas.
        J. Neurooncol. 2003; 64: 227-237
        • Kawai N.
        • Nishiyama Y.
        • Miyake K.
        • Tamiya T.
        • Nagao S.
        Evaluation of tumor FDG transport and metabolism in primary central nervous system lymphoma using [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) kinetic analysis.
        Ann. Nucl. Med. 2005; 19: 685-690
        • Zhang Y.
        • Zhang Q.
        • Wang X.X.
        • Deng X.F.
        • Zhu Y.Z.
        Value of pretherapeutic DWI in evaluating prognosis and therapeutic effect in immunocompetent patients with primary central nervous system lymphoma given high-dose methotrexate-based chemotherapy: ADC-based assessment.
        Clin. Radiol. 2016; 71: 1018-1029
        • Huang W.Y.
        • Wen J.B.
        • Wu G.
        • Yin B.
        • Li J.J.
        • Geng D.Y.
        Diffusion-weighted imaging for predicting and monitoring primary central nervous system lymphoma treatment response.
        AJNR Am. J. Neuroradiol. 2016; 37: 2010-2018https://doi.org/10.3174/ajnr.A4867
        • Kawai N.
        • Zhen H.N.
        • Miyake K.
        • Yamamaoto Y.
        • Nishiyama Y.
        • Tamiya T.
        Prognostic value of pretreatment 18F-FDG PET in patients with primary central nervous system lymphoma: SUV-based assessment.
        J. Neurooncol. 2010; 100: 225-232
        • Kasenda B.
        • Haug V.
        • Schorb E.
        • Fritsch K.
        • Finke J.
        • Mix M.
        • Hader C.
        • Weber W.A.
        • Illerhaus G.
        • Meyer P.T.
        18F-FDG PET is an independent outcome predictor in primary central nervous system lymphoma.
        J. Nucl. Med. 2013; 54: 184-191
        • Zhang H.
        • Wu P.
        • Ziegler S.I.
        • Guan Y.
        • Wang Y.
        • Ge J.
        • Schwaiger M.
        • Huang S.C.
        • Zuo C.
        • Förster S.
        • Shi K.
        Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain.
        Neuroimage. 2017; 146: 589-599
        • Shi X.C.
        • Yi C.
        • Wang X.Y.
        • Zhang B.
        • Chen Z.F.
        • Tang G.H.
        • Zhang X.S.
        13N-ammonia combined with 18F-FDG could discriminate between necrotic high-grade gliomas and brain abscess.
        Clin. Nucl. Med. 2015; 40: 195-199
        • Yamashita K.
        • Yoshiura T.
        • Hiwatashi A.
        • Togao O.
        • Yoshimoto K.
        • Suzuki S.O.
        • Abe K.
        • Kikuchi K.
        • Maruoka Y.
        • Mizoguchi M.
        • Iwaki T.
        • Honda H.
        Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and 18F-fluorodeoxyglucose positron emission tomography.
        Neuroradiology. 2013; 55: 135-143
        • Makino K.
        • Hirai T.
        • Nakamura H.
        • Murakami R.
        • Kitajima M.
        • Shigematsu Y.
        • Nakashima R.
        • Shiraishi S.
        • Uetani H.
        • Iwashita K.
        • Akter M.
        • Yamashita Y.
        • Kuratsu J.
        Does adding FDG-PET to MRI improve the differentiation between primary cerebral lymphoma and glioblastoma? Observer performance study.
        Ann. Nucl. Med. 2011; 25: 432-438
        • You D.L.
        • Shieh F.Y.
        • Tzen K.Y.
        • Tsai M.F.
        • Kao P.F.
        Cerebral perfusion SPECT in transient ischemic attack.
        Eur. J. Radiol. 2000; 34: 48-51
        • Kitajima K.
        • Yamano T.
        • Fukushima K.
        • Miyoshi Y.
        • Hirota S.
        • Kawanaka Y.
        • Miya M.
        • Doi H.
        • Yamakado K.
        • Hirota S.
        Correlation of the suvmax of FDG-PET and ADC values of diffusion-weighted MR imaging with pathologic prognostic factors in breast carcinoma.
        Eur. J. Radiol. 2016; 85: 943-949
        • Nakajo M.
        • Nakajo M.
        • Kajiya Y.
        • Tani A.
        • Kamiyama T.
        • Yonekura R.
        • Fukukura Y.
        • Matsuzaki T.
        • Nishimoto K.
        • Nomoto M.
        • Koriyama C.
        FDG PET/CT and diffusion-weighted imaging of head and neck squamous cell carcinoma: comparison of prognostic significance between primary tumor standardized uptake value and apparent diffusion coefficient.
        Clin. Nucl. Med. 2012; 37: 475-480
        • Matsushima N.
        • Maeda M.
        • Umino M.
        • Suzawa N.
        • Yamada T.
        • Takeda K.
        Relation between FDG uptake and apparent diffusion coefficients in glioma and malignant lymphoma.
        Ann. Nucl. Med. 2012; 26: 262-271
        • Wu X.
        • Korkola P.
        • Pertovaara H.
        • Eskola H.
        • Järvenpää R.
        • Kellokumpu-Lehtinen P.L.
        No correlation between glucose metabolism and apparent diffusion coefficient in diffuse large B-cell lymphoma: a PET/CT and DW-MRI study.
        Eur. J. Radiol. 2011; 79: e117-e121
        • Fruehwald-Pallamar J.
        • Czerny C.
        • Mayerhoefer M.E.
        • Halpern B.S.
        • Eder-Czembirek C.
        • Brunner M.
        • Schuetz M.
        • Weber M.
        • Fruehwald L.
        • Herneth A.M.
        Functional imaging in head and neck squamous cell carcinoma: correlation of PET/CT and diffusion-weighted imaging at 3 Tesla.
        Eur. J. Nucl. Med. Mol. Imaging. 2011; 38: 1009-1019
        • Varoquaux A.
        • Rager O.
        • Lovblad K.O.
        • Masterson K.
        • Dulguerov P.
        • Ratib O.
        • Becker C.D.
        • Becker M.
        Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV.
        Eur. J. Nucl. Med. Mol. Imaging. 2013; 40: 842-852
        • Padhani A.R.
        • Liu G.
        • Koh D.M.
        • Chenevert T.L.
        • Thoeny H.C.
        • Takahara T.
        • Dzik-Jurasz A.
        • Ross B.D.
        • Cauteren V.M.
        • Collins D.
        • Hammoud D.A.
        • Rustin G.J.
        • Taouli B.
        • Choyke P.L.
        Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations.
        Neoplasia. 2009; 11: 102-125
        • Adams M.C.
        • Turkington T.G.
        • Wilson J.M.
        • Wong T.Z.
        A systematic review of the factors affecting accuracy of SUV measurements.
        AJR Am. J. Roentgenol. 2010; 195: 310-320
        • Hino-Shishikura A.
        • Tateishi U.
        • Shibata H.
        • Yoneyama T.
        • Nishii T.
        • Torii I.
        • Tateishi K.
        • Ohtake M.
        • Kawahara N.
        • Inoue T.
        Tumor hypoxia and microscopic diffusion capacity in brain tumors: a comparison of (62)Cu-diacetyl-bis (N4-methylthiosemicarbazone) PET/CT and diffusion-weighted MR imaging.
        Eur. J. Nucl. Med. Mol. Imaging. 2014; 41: 1419-1427