Does renal function affect gadolinium deposition in the brain?



      Was to compare T1 signal intensity ratios of dentate nucleus to cerebellar white matter (DN/cerebellum), dentate nucleus to pons (DN/pons) and globus pallidus to thalamus (GP/thalamus) in patients with normal renal function and in patients on chronic hemodialysis. To find out if renal function affects the deposition of gadolinium in brain after administration of linear gadolinium based contrast agents (GBCA).


      Seventy eight contrast enhanced brain MRIs (Magnetic Resonance Imaging) with linear GBCA of 13 patients on chronic hemodialysis and 13 patients with normal renal function retrospectively evaluated. The DN/pons, DN/cerebellum and GP/thalamus signal intensity ratios were measured from each brain MRI on unenhanced axial T1 weighted images.


      In hemodialysis group statistically significant increase in the signal intensity ratios of DN/pons, DN/cerebellum and GP/thalamus were found between the first and the last brain MRIs (p = .001). The increase in the signal intensity ratios of DN/pons, DN/cerebellum and GP/thalamus between the first and the last brain MRIs in control group were not significant (p > 0.05). The signal intensity increase in DN and globus pallidus were significantly higher in hemodialysis group than control group (p < 0.05).


      Patients on hemodialysis had significantly higher DN and GP signal intensity increase compared to the patients with normal renal function. Renal function affects the rate of gadolinium deposition in the brain after administration of linear GBCA.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Idée J.M.
        • Port M.
        • Raynal I.
        • Schaefer M.
        • Le Greneur S.
        • Corot C.
        Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review.
        Fundam. Clin. Pharmacol. 2006; 20: 563-576
        • Kanda T.
        • Ishii K.
        • Kawaguchi H.
        • Kitajima K.
        • Takenaka D.
        High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material.
        Radiology. 2014; 270: 834-841
        • Kanda T.
        • Osawa M.
        • Oba H.
        • Toyoda K.
        • Kotoku J.
        • Haruyama T.
        • et al.
        High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration.
        Radiology. 2015; 275: 803-809
        • Radbruch A.
        • Weberling L.D.
        • Kieslich P.J.
        • Eidel O.
        • Burth S.
        • Kickingereder P.
        • et al.
        Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent.
        Radiology. 2015; 275: 783-791
        • Kanda T.
        • Fukusato T.
        • Matsuda M.
        • Toyoda K.
        • Oba H.
        • Kotoku J.
        • et al.
        Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy.
        Radiology. 2015; 276: 228-232
        • McDonald R.J.
        • McDonald J.S.
        • Kallmes D.F.
        • Jentoft M.E.
        • Murray D.L.
        • Thielen K.R.
        • et al.
        Intracranial gadolinium deposition after contrast-enhanced MR imaging.
        Radiology. 2015; 275: 772-782
        • Aime S.
        • Caravan P.
        Biodistribution of gadolinium-based contrast agents: including gadolinium deposition.
        J. Magn. Reson. Imaging. 2009; 30: 1259-1267
        • Cowper S.E.
        • Robin H.S.
        • Steinberg S.M.
        • Su L.D.
        • Gupta S.
        • LeBoit P.E.
        Scleromyxoedema-like cutaneous diseases in renal-dialysis patients.
        Lancet. 2000; 356: 1000-1001
        • Kay J.
        • Bazari H.
        • Avery L.L.
        • Koreishi A.F.
        • Kay J.
        • Bazari H.
        • et al.
        Case records of the Massachusetts General Hospital. Case 6–2008. A 46-year-old woman with renal failure and stiffness of the joints and skin.
        N. Engl. J. Med. 2008; 358: 827-838
        • Nandwana S.B.
        • Moreno C.C.
        • Osipow M.T.
        • Sekhar A.
        • Cox K.L.
        Gadobenate dimeglumine administration and nephrogenic systemic fibrosis: is there a real risk in patients with impaired renal function.
        Radiology. 2015; 276: 741-747
        • Cowper S.E.
        • Rabach M.
        • Girardi M.
        Clinical and histological findings in nephrogenic systemic fibrosis.
        Eur. J. Radiol. 2008; 66: 191-199
        • Grobner T.
        Gadolinium a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis.
        Nephrol. Dial. Transplant. 2006; 21: 1104-1108
        • High W.A.
        • Ayers R.A.
        • Chandler J.
        • Zito G.
        • Cowper S.E.
        Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis.
        J. Am. Acad. Dermatol. 2007; 56: 21-26
        • Cao Y.
        • Zhang Y.
        • Shih G.
        • Zhang Y.
        • Bohmart A.
        • Hecht E.M.
        • et al.
        Effect of renal function on gadolinium-Related signal increases on unenhanced T1-Weighted brain magnetic resonance imaging.
        Invest. Radiol. 2016; 51: 677-682
      1. Multihance [Package Insert].
        Bracco Diagnositc Inc., Monroe Township, NJ2018 (Available at:,2013 (Accessed March 11 2016))
      2. ACR Manual on Contrast Media. ACR Committee on Drugs and Contrast Media∼/media/ACR/Documents/PDF/QualitySafety/Resources/Contrast%20Manual/2013_Contrast_Media.pdf.(Accessed July 15 2014).

        • Errante Y.
        • Cirimele V.
        • Mallio C.A.
        • Di Lazzaro V.
        • Zobel B.B.
        • Quattrocchi C.C.
        Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation.
        Invest. Radiol. 2014; 49: 685-690
        • Radbruch A.
        • Weberling L.D.
        • Kieslich P.J.
        • Hepp J.
        • Kickingereder P.
        • Wick W.
        • et al.
        Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents.
        Invest. Radiol. 2016; 51: 683-690
        • McDonald R.J.
        • McDonald J.S.
        • Dai D.
        • Schroeder D.
        • Jentoft M.E.
        • Murray et al D.L.
        Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates.
        Radiology. 2017; 285: 536-545
        • 20-Weberling L.D.
        • Kieslich P.J.
        • Kickingereder P.
        • Wick W.
        • Bendszus M.
        • Schlemmer H.P.
        • et al.
        Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration.
        Invest. Radiol. 2015; 50: 743-748
        • Frenzel T.
        • Lengsfeld P.
        • Schirmer H.
        • Hütter J.
        • Weinmann H.J.
        Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37° C.
        Invest. Radiol. 2008; 43: 817-828
        • Fretellier N.
        • Idée J.M.
        • Dencausse A.
        • Karroum O.
        • Guerret S.
        • Poveda N.
        • et al.
        Comparative in vivo dissociation of gadolinium chelates in renally impaired rats: a relaxometry study.
        Invest. Radiol. 2011; 46: 292-300
        • 23-Kanda T.
        • Nakai Y.
        • Oba H.
        • Toyoda K.
        • Kitajima K.
        • Furui S.
        Gadolinium deposition in the brain.
        Magn. Reson. Imaging. 2016; 34: 1346-1350
        • Bressler J.P.
        • Olivi L.
        • Cheong J.H.
        • Kim Y.
        • Maerten A.
        • Bannon D.
        Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities.
        Hum. Exp. Toxicol. 2007; 26 (Review): 221-229
        • Hoggard N.
        • Roditi G.H.
        T1 hyperintensity on brain imaging subsequent to gadolinium-based contrast agent administration: what do we know about intracranial gadolinium deposition?.
        Br. J. Radiol. 2017; 90: 20160590
        • 26-Jessen N.A.
        • Munk A.S.
        • Lundgaard I.
        • Nedergaard M.
        The glymphatic system: a beginner's guide.
        Neurochem. Res. 2015; 40: 2583-2599
        • da Silva C.J.
        • da Rocha A.J.
        • Jeronymo S.
        • Mendes M.F.
        • Milani F.T.
        • Maia Jr, A.C.
        • et al.
        A preliminary study revealing a new association in patients undergoing maintenance hemodialysis: manganism symptoms and T1 hyperintense changes in the basal ganglia.
        AJNR Am. J. Neuroradiol. 2007; 28: 1474-1479
        • Hegde A.N.
        • Mohan S.
        • Lath N.
        • Lim C.C.
        Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus.
        Radiographics. 2011; 31: 5-30
        • Quattrocchi C.C.
        • Longo D.
        • Delfino L.N.
        • Errante Y.
        • Aiello C.
        • Fariello G.
        • et al.
        MR differential diagnosis of acute deep grey matter pathology in paediatric patients.
        Pediatr. Radiol. 2013; 43: 743-761