Advertisement

1H MR spectroscopy in pediatrics

  • Monika Dezortova
    Correspondence
    Corresponding author. Tel.: +420 23605 5245; fax: +420 24172 8224.
    Affiliations
    MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
    Search for articles by this author
  • Author Footnotes
    1 Tel.: +420 23605 5349; fax: +420 24172 8224.
    Milan Hajek
    Footnotes
    1 Tel.: +420 23605 5349; fax: +420 24172 8224.
    Affiliations
    MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
    Search for articles by this author
  • Author Footnotes
    1 Tel.: +420 23605 5349; fax: +420 24172 8224.

      Abstract

      Spectral appearance and concentrations of the most prominent metabolites are affected by brain development. This knowledge is essential for the detection of pathological changes in pediatric patients. This paper discusses specific conditions of MR spectroscopic examination of children and the effects of age on MR spectra quality and quantitation of the studied metabolites. Clinical examples show several diseases that are reflected in changes in 1H MR spectra due to pathological alterations in the biochemical pathways of the observed metabolites. Attention is given to the main metabolites such as N-acetylaspartate, creatine/phosphocreatine, cholines, lactate, inositol, etc.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Bluml S.
        • Friedrich P.
        • Erberich S.
        • Wood J.C.
        • Seri I.
        • Nelson Jr., M.D.
        MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency coils: initial experience.
        Radiology. 2004; 231: 594-601
        • Hallgren B.
        • Sourander P.
        The effect of age on the non-haemic iron in the human brain.
        J Neurochem. 1958; 3: 41-51
        • Schenker C.
        • Meier D.
        • Wichmann W.
        • Boesiger P.
        • Valavanis A.
        Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen.
        Neuroradiology. 1993; 35: 119-124
        • Kreis R.
        • Ernst T.
        • Ross B.D.
        Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy.
        Magn Reson Med. 1993; 30: 424-437
        • Kreis R.
        • Hofmann L.
        • Kuhlmann B.
        • Boesch C.
        • Bossi E.
        • Hüppi P.S.
        Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy.
        Magn Reson Med. 2002; 48: 949-958
        • Toft P.B.
        • Leth H.
        • Lou H.C.
        • Pryds O.
        • Henriksen O.
        Metabolite concentrations in the developing brain estimated with proton MR spectroscopy.
        J Magn Reson Imaging. 1994; 4: 674-680
        • van der Knaap M.S.
        • Valk J.
        Magnetic resonance of myelin, myelination and myelin disorders.
        Springer, 1995
        • Heerschap A.
        • Kok R.D.
        • van den Berg P.P.
        Antenatal proton MR spectroscopy of the human brain in vivo.
        Childs Nerv Syst. 2003; 19: 418-421
        • Kok R.D.
        • van den Berg P.P.
        • van der Bergh A.J.
        • Nijland R.
        • Heerschap A.
        Maturation of the human fetal brain as observed by 1H MR spectroscopy.
        Magn Reson Med. 2002; 48: 611-616
        • Hajek M.
        • Dezortova M.
        • Krsek P.
        1H MR spectroscopy in epilepsy.
        Eur J Radiol. 2008; 67: 258-267
        • Hajek M.
        • Dezortova M.
        Introduction to clinical in vivo MR spectroscopy.
        Eur J Radiol. 2008; 67: 185-193
        • Mader I.
        • Rauer S.
        • Gall P.
        • Klose U.
        1H MR Spectroscopy of inflammation, infection and ischemia of the brain.
        Eur J Radiol. 2008; 67: 250-257
        • Hajek M.
        • Adamovicova M.
        • Herynek V.
        • et al.
        MR relaxometry and 1H MR spectroscopy for the determination of iron and metabolite concentrations in PKAN patients.
        Eur Radiol. 2005; 15: 1060-1068
        • Martin E.
        • Capone A.
        • Schneider J.
        • Hennig J.
        • Thiel T.
        Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy?.
        Ann Neurol. 2001; 49: 518-521
        • Schulze A.
        Creatine deficiency syndromes.
        Mol Cell Biochem. 2003; 244: 143-150
        • Ensenauer R.
        • Thiel T.
        • Schwab K.O.
        • et al.
        Guanidinoacetate methyltransferase deficiency: differences of creatine uptake in human brain and muscle.
        Mol Genet Metab. 2004; 82: 208-213
        • Dezortova M.
        • Hajek M.
        • Tintera J.
        • Hejcmanova L.
        • Sykova E.
        MR in phenylketonuria-related brain lesions.
        Acta Radiol. 2001; 42: 459-466
        • Dezortova M.
        • Hejcmanova L.
        • Hajek M.
        Decreasing choline signal – a marker of phenylketonuria?.
        Magn Reson Mater Phys. 1996; 4: 181-186
        • Kreis R.
        • Pietz J.
        • Penzien J.
        • Herschkowitz N.
        • Boesch C.
        Identification and quantitation of phenylalanine in the brain of patients with phenylketonuria by means of localized in vivo 1H magnetic-resonance spectroscopy.
        J Magn Reson Ser B. 1995; 107: 242
        • Leuzzi V.
        • Tosetti M.
        • Montanaro D.
        • et al.
        The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3. 0 tesla MRI and magnetic resonance spectroscopy (1H MRS) study.
        J Inherit Metab Dis. 2007; 30: 209-216