Advertisement

1H MR spectroscopy of inflammation, infection and ischemia of the brain

  • Irina Mader
    Correspondence
    Corresponding author at: Section of Neuroradiology, Neurocenter of the Freiburg University Hospital, Breisacher Street 64, 79106 Freiburg, Germany. Tel.: +49 761 270 5192; fax: +49 761 270 5195.
    Affiliations
    Section of Neuroradiology, Neurocenter of the Freiburg University Hospital, Breisacher Street 64, D-79106 Freiburg, Germany

    Freiburg Brain Imaging Center, Department of Neurology of the Freiburg University Hospital, Breisacher Street 64, D-79106 Freiburg, Germany
    Search for articles by this author
  • Sebastian Rauer
    Affiliations
    Department of Neurology of the Freiburg University Hospital, Breisacher Street 64, D-79106 Freiburg, Germany
    Search for articles by this author
  • Peter Gall
    Affiliations
    Department of Radiology, Medical Physics, University Hospital Freiburg, Hugstetter Street 49, 79095 Freiburg, Germany
    Search for articles by this author
  • Uwe Klose
    Affiliations
    Section of Experimental MR of the CNS, Department of Neuroradiology, Radiological University Hospital, Hoppe-Seyler-Street 3, 72076 Tübingen, Germany
    Search for articles by this author

      Abstract

      Different pathologic patterns in multiple sclerosis (MS) are reflected by alterations of metabolites in 1H MR spectroscopy of the brain. Elevated choline (Cho), lactate (Lac), lipids and macromolecules are reliable markers for acute demyelination regardless of the clinical entity (also in acute disseminated encephalomyelitis). N-acetyl-aspartate (NAA) is a suitable marker for neuronal integrity. It is reduced in acute MS lesions and in normal appearing white matter, even distant to acute and chronic-lesions. Recovery from reduced NAA levels to subnormal values during remyelination, and varying time courses of NAA in normal appearing white matter during relapsing remitting disease indicate the value of this spectroscopic marker for monitoring activity and recovery. Inositol (Ins) is increased in chronic MS lesions being a marker for astrocytic gliosis. In viral disease, Cho and Ins are always increased, whereas a reduction of NAA mostly reflects an advanced or a detoriated clinical state. In bacterial brain abscesses, numerous amino acids, lipids and Lac can be elevated. In ischemia, especially the Lac/NAA in comparison with perfusion and diffusion weighted imaging seems to be a new measure for areas of metabolic need, and may help to better characterise the penumbra of the stroke and the final infarct size.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barker P.B.
        • Gillard J.H.
        • van Zijl P.C.
        • et al.
        Acute stroke: evaluation with serial proton MR spectroscopic imaging.
        Radiology. 1994; 192: 723-732
        • Gideon P.
        • Henriksen O.
        • Sperling B.
        • et al.
        Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study.
        Stroke. 1992; 23: 1566-1572
        • Graham G.D.
        • Blamire A.M.
        • Rothman D.L.
        • et al.
        Early temporal variation of cerebral metabolites after human stroke. A proton magnetic resonance spectroscopy study.
        Stroke. 1993; 24: 1891-1896
        • Mader I.
        • Roser W.
        • Kappos L.
        • et al.
        Serial proton MR spectroscopy of contrast-enhancing multiple sclerosis plaques: absolute metabolic values over 2 years during a clinical pharmacological study.
        AJNR Am J Neuroradiol. 2000; 21: 1220-1227
        • Matthews P.M.
        • Arnold D.L.
        Magnetic resonance imaging of multiple sclerosis: new insights linking pathology to clinical evolution.
        Curr Opin Neurol. 2001; 14: 279-287
        • Nicoli F.
        • Lefur Y.
        • Denis B.
        • et al.
        Metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke: a brain proton magnetic resonance spectroscopic imaging study.
        Stroke. 2003; 34: e82-e87
        • Roser W.
        • Hagberg G.
        • Mader I.
        • et al.
        Proton MRS of gadolinium-enhancing MS plaques and metabolic changes in normal-appearing white matter.
        Magn Reson Med. 1995; 33: 811-817
        • Glodzik-Sobanska L.
        • Li J.
        • Mosconi L.
        • et al.
        Prefrontal N-acetylaspartate and poststroke recovery: a longitudinal proton spectroscopy study.
        AJNR Am J Neuroradiol. 2007; 28: 470-474
        • De Stefano N.
        • Matthews P.M.
        • Narayanan S.
        • et al.
        Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient.
        Neurology. 1997; 49: 1138-1141
        • De Stefano N.
        • Narayanan S.
        • Francis S.J.
        • et al.
        Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability.
        Arch Neurol. 2002; 59: 1565-1571
        • De Stefano N.
        • Narayanan S.
        • Matthews P.M.
        • et al.
        In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis.
        Brain. 1999; 122: 1933-1939
        • Chang L.
        • Ernst T.
        • Leonido-Yee M.
        • et al.
        Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia.
        Neurology. 1999; 53: 782-789
        • Kinoshita Y.
        • Yokota A.
        Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy.
        NMR Biomed. 1997; 10: 2-12
        • Rumpel H.
        • Khoo J.B.
        • Chang H.M.
        • et al.
        Correlation of the apparent diffusion coefficient and the creatine level in early ischemic stroke: a comparison of different patterns by magnetic resonance.
        J Magn Reson Imag. 2001; 13: 335-343
        • Stadlbauer A.
        • Gruber S.
        • Nimsky C.
        • et al.
        Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging.
        Radiology. 2006; 238: 958-969
        • Pan J.W.
        • Hetherington H.P.
        • Vaughan J.T.
        • et al.
        Evaluation of multiple sclerosis by 1H spectroscopic imaging at 4.1 T.
        Magn Reson Med. 1996; 36: 72-77
        • Urenjak J.
        • Williams S.R.
        • Gadian D.G.
        • Noble M.
        Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.
        J Neurosci. 1993; 13: 981-989
        • Bluml S.
        • Seymour K.J.
        • Ross B.D.
        Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled (31)P MRS in in vivo human brain.
        Magn Reson Med. 1999; 42: 643-654
        • Chang L.
        • Ernst T.
        • Leonido-Yee M.
        • et al.
        Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex.
        Neurology. 1999; 52: 100-108
        • Samann P.G.
        • Schlegel J.
        • Muller G.
        • et al.
        Serial proton MR spectroscopy and diffusion imaging findings in HIV-related herpes simplex encephalitis.
        AJNR Am J Neuroradiol. 2003; 24: 2015-2019
        • Bitsch A.
        • Schuchardt J.
        • Bunkowski S.
        • et al.
        Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation.
        Brain. 2000; 123: 1174-1183
        • Brand A.
        • Richter-Landsberg C.
        • Leibfritz D.
        Multinuclear NMR studies on the energy metabolism of glial and neuronal cells.
        Dev Neurosci. 1993; 15: 289-298
        • Katz-Brull R.
        • Lenkinski R.E.
        • Du Pasquier R.A.
        • Koralnik I.J.
        Elevation of myoinositol is associated with disease containment in progressive multifocal leukoencephalopathy.
        Neurology. 2004; 63: 897-900
        • Cianfoni A.
        • Niku S.
        • Imbesi S.G.
        Metabolite findings in tumefactive demyelinating lesions utilizing short echo time proton magnetic resonance spectroscopy.
        AJNR Am J Neuroradiol. 2007; 28: 272-277
        • Sastre-Garriga J.
        • Ingle G.T.
        • Chard D.T.
        • et al.
        Metabolite changes in normal-appearing gray and white matter are linked with disability in early primary progressive multiple sclerosis.
        Arch Neurol. 2005; 62: 569-573
        • Parsons M.W.
        • Li T.
        • Barber P.A.
        • et al.
        Combined (1)H MR spectroscopy and diffusion-weighted MRI improves the prediction of stroke outcome.
        Neurology. 2000; 55: 498-505
        • Arnold D.L.
        • Matthews P.M.
        • Francis G.S.
        • et al.
        Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques.
        Ann Neurol. 1992; 31: 235-241
        • Mader I.
        • Seeger U.
        • Weissert R.
        • et al.
        Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis.
        Brain. 2001; 124: 953-961
        • Lewiston N.J.
        • Theodore J.
        • Robin E.D.
        Intracellular edema and dehydration: effects on energy metabolism in alveolar macrophages.
        Science. 1976; 191: 403-404
        • Behar K.L.
        • Ogino T.
        Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain.
        Magn Reson Med. 1993; 30: 38-44
        • Hofmann L.
        • Slotboom J.
        • Boesch C.
        • Kreis R.
        Characterization of the macromolecule baseline in localized (1)H-MR spectra of human brain.
        Magn Reson Med. 2001; 46: 855-863
        • Hwang J.H.
        • Graham G.D.
        • Behar K.L.
        • et al.
        Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain.
        Magn Reson Med. 1996; 35: 633-639
        • Pfeuffer J.
        • Tkac I.
        • Provencher S.W.
        • Gruetter R.
        Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain.
        J Magn Reson. 1999; 141: 104-120
        • Seeger U.
        • Klose U.
        • Mader I.
        • et al.
        Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases.
        Magn Reson Med. 2003; 49: 19-28
        • Seeger U.
        • Mader I.
        • Nagele T.
        • et al.
        Reliable detection of macromolecules in single-volume 1H NMR spectra of the human brain.
        Magn Reson Med. 2001; 45: 948-954
        • Soher B.J.
        • Vermathen P.
        • Schuff N.
        • et al.
        Short TE in vivo (1)H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis.
        Magn Reson Imag. 2000; 18: 1159-1165
        • Gasparovic C.
        • Arfai N.
        • Smid N.
        • Feeney D.M.
        Decrease and recovery of N-acetylaspartate/creatine in rat brain remote from focal injury.
        J Neurotrauma. 2001; 18: 241-246
        • Gasparovic C.
        • Berghmans K.
        Ca2+- and Mg2+-modulated lipolysis in neonatal rat brain slices observed by one- and two-dimensional NMR.
        J Neurochem. 1998; 71: 1727-1732
        • Behar K.L.
        • Rothman D.L.
        • Spencer D.D.
        • Petroff O.A.
        Analysis of macromolecule resonances in 1H NMR spectra of human brain.
        Magn Reson Med. 1994; 32: 294-302
        • Demaerel P.
        • Van Hecke P.
        • Van Oostende S.
        • et al.
        Bacterial metabolism shown by magnetic resonance spectroscopy.
        Lancet. 1994; 344: 1234-1235
        • Hajek M.
        • Dezortova M.
        Introduction to clinical in vivo MR spectroscopy.
        Eur J Radiol. 2008; 67: 185-193
        • Helms G.
        The principles of quantification applied to in vivo 1H MR spectroscopy.
        Eur J Radiol. 2008; 67: 218-229
        • Jiru F.
        Introduction to post-processing techniques.
        Eur J Radiol. 2008; 67: 202-217
        • Klose U.
        Measurement sequences for single voxel 1H MR spectroscopy.
        Eur J Radiol. 2008; 67: 194-201
        • Hanstock C.C.
        • Cwik V.A.
        • Martin W.R.
        Reduction in metabolite transverse relaxation times in amyotrophic lateral sclerosis.
        J Neurol Sci. 2002; 198: 37-41
        • Wang Y.
        • Li S.J.
        Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy.
        Magn Reson Med. 1998; 39: 28-33
        • Arnold D.L.
        Evidence for neuroprotection and remyelination using imaging techniques.
        Neurology. 2007; 68 (discussion S91–96): S83-S90
        • Trapp B.D.
        • Ransohoff R.
        • Rudick R.
        Axonal pathology in multiple sclerosis: relationship to neurologic disability.
        Curr Opin Neurol. 1999; 12: 295-302
        • Tartaglia M.C.
        • Narayanan S.
        • De Stefano N.
        • et al.
        Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis.
        J Neurol. 2002; 249: 1382-1390
        • Davie C.A.
        • Hawkins C.P.
        • Barker G.J.
        • et al.
        Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions.
        Brain. 1994; 117: 49-58
        • De Stefano N.
        • Matthews P.M.
        • Fu L.
        • et al.
        Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study.
        Brain. 1998; 121: 1469-1477
        • Schubert F.
        • Seifert F.
        • Elster C.
        • et al.
        Serial 1H-MRS in relapsing-remitting multiple sclerosis: effects of interferon-beta therapy on absolute metabolite concentrations.
        Magma. 2002; 14: 213-222
        • Davie C.A.
        • Barker G.J.
        • Webb S.
        • et al.
        Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss.
        Brain. 1995; 118: 1583-1592
        • Sarchielli P.
        • Presciutti O.
        • Tarducci R.
        • et al.
        1H-MRS in patients with multiple sclerosis undergoing treatment with interferon beta-1a: results of a preliminary study.
        J Neurol Neurosurg Psychiatry. 1998; 64: 204-212
        • Husted C.A.
        • Goodin D.S.
        • Hugg J.W.
        • et al.
        Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging.
        Ann Neurol. 1994; 36: 157-165
        • Kapeller P.
        • McLean M.A.
        • Griffin C.M.
        • et al.
        Preliminary evidence for neuronal damage in cortical grey matter and normal appearing white matter in short duration relapsing-remitting multiple sclerosis: a quantitative MR spectroscopic imaging study.
        J Neurol. 2001; 248: 131-138
        • Chard D.T.
        • Griffin C.M.
        • McLean M.A.
        • et al.
        Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis.
        Brain. 2002; 125: 2342-2352
        • Salvan A.M.
        • Vion-Dury J.
        • Confort-Gouny S.
        • et al.
        Brain proton magnetic resonance spectroscopy in HIV-related encephalopathy: identification of evolving metabolic patterns in relation to dementia and therapy.
        AIDS Res Hum Retroviruses. 1997; 13: 1055-1066
        • Taylor M.J.
        • Schweinsburg B.C.
        • Alhassoon O.M.
        • et al.
        Effects of human immunodeficiency virus and methamphetamine on cerebral metabolites measured with magnetic resonance spectroscopy.
        J Neurovirol. 2007; 13: 150-159
        • Aydin K.
        • Tatli B.
        • Ozkan M.
        • et al.
        Quantification of neurometabolites in subacute sclerosing panencephalitis by 1H-MRS.
        Neurology. 2006; 67: 911-913
        • Callot V.G.D.
        • Le Fur Y.
        • Confort-Gouny S.
        • Ranjeva J.P.
        • Cozzone P.J.
        Spectroscopy of human brain tumours: a practical approach.
        Eur J Radiol. 2008; 67: 268-274
        • Dev R.
        • Gupta R.K.
        • Poptani H.
        • et al.
        Role of in vivo proton magnetic resonance spectroscopy in the diagnosis and management of brain abscesses.
        Neurosurgery. 1998; 42 (discussion 42–33): 37-42
        • Garg M.
        • Gupta R.K.
        • Husain M.
        • et al.
        Brain abscesses: etiologic categorization with in vivo proton MR spectroscopy.
        Radiology. 2004; 230: 519-527
        • Grand S.
        • Passaro G.
        • Ziegler A.
        • et al.
        Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy—initial results.
        Radiology. 1999; 213: 785-793
        • Harada M.
        • Tanouchi M.
        • Miyoshi H.
        • et al.
        Brain abscess observed by localized proton magnetic resonance spectroscopy.
        Magn Reson Imag. 1994; 12: 1269-1274
        • Kim S.H.
        • Chang K.H.
        • Song I.C.
        • et al.
        Brain abscess and brain tumor: discrimination with in vivo H-1 MR spectroscopy.
        Radiology. 1997; 204: 239-245
        • Poptani H.
        • Gupta R.K.
        • Jain V.K.
        • et al.
        Cystic intracranial mass lesions: possible role of in vivo MR spectroscopy in its differential diagnosis.
        Magn Reson Imag. 1995; 13: 1019-1029
        • Gupta R.K.
        • Vatsal D.K.
        • Husain N.
        • et al.
        Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging.
        AJNR Am J Neuroradiol. 2001; 22: 1503-1509
        • Pretell E.J.
        • Martinot Jr., C.
        • Garcia H.H.
        • et al.
        Differential diagnosis between cerebral tuberculosis and neurocysticercosis by magnetic resonance spectroscopy.
        J Comput Assist Tomogr. 2005; 29: 112-114
        • Omuro A.M.
        • Leite C.C.
        • Mokhtari K.
        • Delattre J.Y.
        Pitfalls in the diagnosis of brain tumours.
        Lancet Neurol. 2006; 5: 937-948
        • Graham G.D.
        • Blamire A.M.
        • Howseman A.M.
        • et al.
        Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients.
        Stroke. 1992; 23: 333-340
        • Fiehler J.
        Editorial comment—ADC and metabolites in stroke: even more confusion about diffusion?.
        Stroke. 2003; 34: e87-e88